Letting logos speak: Leveraging multiview representation learning for data-driven branding and logo design R Dew, A Ansari, O Toubia Marketing Science 41 (2), 401-425, 2022 | 70 | 2022 |
Bayesian nonparametric customer base analysis with model-based visualizations R Dew, A Ansari Marketing Science 37 (2), 216-235, 2018 | 65 | 2018 |
Modeling dynamic heterogeneity using Gaussian processes R Dew, A Ansari, Y Li Journal of Marketing Research 57 (1), 55-77, 2020 | 38 | 2020 |
Mega or micro? Influencer selection using follower elasticity Z Tian, R Dew, R Iyengar Journal of Marketing Research 61 (3), 472-495, 2024 | 13 | 2024 |
Adaptive preference measurement with unstructured data R Dew Available at SSRN 4641773, 2023 | 4 | 2023 |
Detecting routines: Applications to ridesharing customer relationship management R Dew, E Ascarza, O Netzer, N Sicherman Journal of Marketing Research 61 (2), 368-392, 2024 | 2 | 2024 |
Probabilistic Machine Learning: New Frontiers for Modeling Consumers and their Choices R Dew, N Padilla, LE Luo, S Oblander, A Ansari, K Boughanmi, M Braun, ... Available at SSRN 4790799, 2024 | 1 | 2024 |
A Gaussian Process Model of Cross-Category Dynamics in Brand Choice R Dew, Y Fan arXiv preprint arXiv:2104.11702, 2021 | 1 | 2021 |
Correlated Dynamics in Marketing Sensitivities R Dew, Y Fan Available at SSRN 3832290, 2024 | | 2024 |
Web Appendix Z Tian, R Dew, R Iyengar | | 2023 |
Web Appendix R Dew, E Ascarza, O Netzer, N Sicherman | | 2023 |
CRM R Dew, O Netzer | | 2023 |
Detecting Routines in Ride-sharing: Implications for Customer Management R Dew, E Ascarza, O Netzer, N Sicherman | | 2021 |
Essays on Machine Learning Methods for Data-Driven Marketing Decisions RT Dew Columbia University, 2019 | | 2019 |