Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data SM Smith, M Jenkinson, H Johansen-Berg, D Rueckert, TE Nichols, ... Neuroimage 31 (4), 1487-1505, 2006 | 7229 | 2006 |
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network W Shi, J Caballero, F Huszár, J Totz, AP Aitken, R Bishop, D Rueckert, ... Proceedings of the IEEE conference on computer vision and pattern …, 2016 | 6828 | 2016 |
Nonrigid registration using free-form deformations: application to breast MR images D Rueckert, LI Sonoda, C Hayes, DLG Hill, MO Leach, DJ Hawkes IEEE transactions on medical imaging 18 (8), 712-721, 1999 | 6556 | 1999 |
Attention u-net: Learning where to look for the pancreas O Oktay, J Schlemper, LL Folgoc, M Lee, M Heinrich, K Misawa, K Mori, ... arXiv preprint arXiv:1804.03999, 2018 | 5507 | 2018 |
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation K Kamnitsas, C Ledig, VFJ Newcombe, JP Simpson, AD Kane, DK Menon, ... Medical image analysis 36, 61-78, 2017 | 3544 | 2017 |
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration A Klein, J Andersson, BA Ardekani, J Ashburner, B Avants, MC Chiang, ... Neuroimage 46 (3), 786-802, 2009 | 2648 | 2009 |
Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research AIR Maas, DK Menon, PD Adelson, N Andelic, MJ Bell, A Belli, P Bragge, ... The Lancet Neurology 16 (12), 987-1048, 2017 | 2114 | 2017 |
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge S Bakas, M Reyes, A Jakab, S Bauer, M Rempfler, A Crimi, RT Shinohara, ... arXiv preprint arXiv:1811.02629, 2018 | 1837 | 2018 |
Attention gated networks: Learning to leverage salient regions in medical images J Schlemper, O Oktay, M Schaap, M Heinrich, B Kainz, B Glocker, ... Medical image analysis 53, 197-207, 2019 | 1429 | 2019 |
A deep cascade of convolutional neural networks for dynamic MR image reconstruction J Schlemper, J Caballero, JV Hajnal, AN Price, D Rueckert IEEE transactions on Medical Imaging 37 (2), 491-503, 2017 | 1256 | 2017 |
Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy P Aljabar, RA Heckemann, A Hammers, JV Hajnal, D Rueckert Neuroimage 46 (3), 726-738, 2009 | 1136 | 2009 |
Automatic anatomical brain MRI segmentation combining label propagation and decision fusion RA Heckemann, JV Hajnal, P Aljabar, D Rueckert, A Hammers NeuroImage 33 (1), 115-126, 2006 | 1130 | 2006 |
Secure, privacy-preserving and federated machine learning in medical imaging GA Kaissis, MR Makowski, D Rückert, RF Braren Nature Machine Intelligence 2 (6), 305-311, 2020 | 813 | 2020 |
Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation O Oktay, E Ferrante, K Kamnitsas, M Heinrich, W Bai, J Caballero, ... IEEE transactions on medical imaging 37 (2), 384-395, 2017 | 785 | 2017 |
Deep learning for cardiac image segmentation: a review C Chen, C Qin, H Qiu, G Tarroni, J Duan, W Bai, D Rueckert Frontiers in cardiovascular medicine 7, 25, 2020 | 698 | 2020 |
Automated cardiovascular magnetic resonance image analysis with fully convolutional networks W Bai, M Sinclair, G Tarroni, O Oktay, M Rajchl, G Vaillant, AM Lee, ... Journal of cardiovascular magnetic resonance 20 (1), 65, 2018 | 655 | 2018 |
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises SK Zhou, H Greenspan, C Davatzikos, JS Duncan, B Van Ginneken, ... Proceedings of the IEEE 109 (5), 820-838, 2021 | 654 | 2021 |
Attention u-net: Learning where to look for the pancreas. arXiv 2018 O Oktay, J Schlemper, LL Folgoc, M Lee, M Heinrich, K Misawa, K Mori, ... arXiv preprint arXiv:1804.03999, 1804 | 631 | 1804 |
Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics SM Smith, H Johansen-Berg, M Jenkinson, D Rueckert, TE Nichols, ... Nature protocols 2 (3), 499-503, 2007 | 629 | 2007 |
Convolutional recurrent neural networks for dynamic MR image reconstruction C Qin, J Schlemper, J Caballero, AN Price, JV Hajnal, D Rueckert IEEE transactions on medical imaging 38 (1), 280-290, 2018 | 585 | 2018 |