关注
Xinying Wang
Xinying Wang
China Electric Power Research Institute
在 epri.sgcc.com.cn 的电子邮件经过验证
标题
引用次数
引用次数
年份
Online sequential extreme learning machine with kernels for nonstationary time series prediction
X Wang, M Han
Neurocomputing 145, 90-97, 2014
2262014
A decision making strategy for generating unit tripping under emergency circumstances based on deep reinforcement learning
W Liu, D Zhang, X Wang, J Hou, L Liu
Proceedings of the CSEE 38 (1), 109-119, 2018
802018
Improved extreme learning machine for multivariate time series online sequential prediction
X Wang, M Han
Engineering Applications of Artificial Intelligence 40, 28-36, 2015
742015
Research and application of artificial intelligence in operation and maintenance for power equipment
T Pu, J Qiao, X Han, GB Zhang, XY Wang
High Voltage Engineering 46 (2), 369-383, 2020
632020
Spatio-temporal convolutional network based power forecasting of multiple wind farms
X Dong, Y Sun, Y Li, X Wang, T Pu
Journal of Modern Power Systems and Clean Energy 10 (2), 388-398, 2021
442021
Renewable scenario generation using controllable generative adversarial networks with transparent latent space
J Qiao, T Pu, X Wang
CSEE Journal of Power and Energy Systems 7 (1), 66-77, 2020
382020
Preventive control for power system transient security based on XGBoost and DCOPF with consideration of model interpretability
S Zhang, D Zhang, J Qiao, X Wang, Z Zhang
CSEE Journal of Power and Energy Systems 7 (2), 279-294, 2020
362020
Power system transient stability analysis based on random matrix theory
W Liu, D Zhang, X Wang, D Liu, Q Wu
Proc. CSEE 36 (18), 4854-4863, 2016
352016
基于极端学习机的多变量混沌时间序列预测
王新迎, 韩敏
物理学报 61 (8), 97-105, 2012
33*2012
多元混沌时间序列的多核极端学习机建模预测
王新迎, 韩敏
物理学报 64 (7), 70504-070504, 2015
31*2015
Multivariate time series prediction based on multiple kernel extreme learning machine
X Wang, M Han
2014 International joint conference on neural networks (IJCNN), 198-201, 2014
302014
人工智能技术在电力设备运维检修中的研究及应用
蒲天骄, 乔骥, 韩笑, 张国宾, 王新迎
高电压技术 46 (2), 369-383, 2020
272020
Analysis of users’ electricity consumption behavior based on ensemble clustering
Q Zhao, H Li, X Wang, T Pu, J Wang
Global Energy Interconnection 2 (6), 479-488, 2019
262019
Key technologies and perspectives of power internet of things facing with digital twins of the energy internet
Z Peng, P Tianjiao, W Xinying
Proceedings of the CSEE 42 (2), 447-457, 2022
232022
Key technologies and perspectives of power internet of things facing with digital twins of the energy internet
P Zhao, TJ Pu, XY Wang, X Han
Proceedings of the CSEE 42 (2), 447-457, 2022
232022
Load shedding control strategy in power grid emergency state based on deep reinforcement learning
J Li, S Chen, X Wang, T Pu
CSEE Journal of Power and Energy Systems 8 (4), 1175-1182, 2021
222021
面向能源互联网数字孪生的电力物联网关键技术及展望
赵鹏, 蒲天骄, 王新迎, 韩笑
中国电机工程学报 42 (2), 447-457, 2022
212022
Power flow adjustment for smart microgrid based on edge computing and multi-agent deep reinforcement learning
T Pu, X Wang, Y Cao, Z Liu, C Qiu, J Qiao, S Zhang
Journal of Cloud Computing 10, 1-13, 2021
212021
Digital twin modeling for photovoltaic panels based on hybrid neural network
G Zhang, X Wang
2021 IEEE 1st International Conference on Digital Twins and Parallel …, 2021
212021
能源互联网数字孪生系统框架设计及应用展望
蒲天骄, 陈盛, 赵琦, 王新迎, 张东霞
中国电机工程学报 41 (6), 2012-2028, 2021
202021
系统目前无法执行此操作,请稍后再试。
文章 1–20