CensNet: Convolution with Edge-Node Switching in Graph Neural Networks. X Jiang, P Ji, S Li IJCAI, 2656-2662, 2019 | 84 | 2019 |
Co-embedding of nodes and edges with graph neural networks X Jiang, R Zhu, S Li, P Ji IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020 | 78 | 2020 |
The multispecies coalescent model outperforms concatenation across diverse phylogenomic data sets X Jiang, SV Edwards, L Liu Systematic biology 69 (4), 795-812, 2020 | 62 | 2020 |
Cross-domain graph convolutions for adversarial unsupervised domain adaptation R Zhu, X Jiang, J Lu, S Li IEEE Transactions on Neural Networks and Learning Systems 34 (8), 3847-3858, 2021 | 27 | 2021 |
Transferable feature learning on graphs across visual domains R Zhu, X Jiang, J Lu, S Li 2021 IEEE International Conference on Multimedia and Expo (ICME), 1-6, 2021 | 14 | 2021 |
Mospat: Automl based model selection and parameter tuning for time series anomaly detection S Chatterjee, R Bopardikar, M Guerard, U Thakore, X Jiang arXiv preprint arXiv:2205.11755, 2022 | 10 | 2022 |
Kats X Jiang, S Srivastava, S Chatterjee, Y Yu, J Handler, P Zhang, ... URL https://github. com/facebookresearch/Kats, 2022 | 8 | 2022 |
Self-supervised learning for fast and scalable time series hyper-parameter tuning P Zhang, X Jiang, G Holt, N Laptev, C Komurlu, P Gao, Y Yu https://arxiv.org/pdf/2102.05740.pdf, 2021 | 3 | 2021 |
ODD: Outlier detection and description S Bhatia, B Hooi, L Akoglu, S Chatterjee, X Jiang, M Gupta Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data …, 2021 | 2 | 2021 |
Graph convolutional neural networks with edge-node switching X Jiang University of Georgia, 2019 | | 2019 |