Advances in variational inference C Zhang, J Bütepage, H Kjellström, S Mandt IEEE transactions on pattern analysis and machine intelligence 41 (8), 2008-2026, 2018 | 815 | 2018 |
Stochastic Gradient Descent as Approximate Bayesian Inference S Mandt, MD Hoffman, DM Blei Journal of Machine Learning Research 18, 1-35, 2017 | 677 | 2017 |
Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms U Schneider, L Hackermüller, JP Ronzheimer, S Will, S Braun, T Best, ... Nature Physics 8 (3), 213-218, 2012 | 518 | 2012 |
Dynamic Word Embeddings R Bamler, S Mandt International Conference on Machine Learning 70, 380-389, 2017 | 453 | 2017 |
How good is the bayes posterior in deep neural networks really? F Wenzel, K Roth, BS Veeling, J Świątkowski, L Tran, S Mandt, J Snoek, ... International Conference on Machine Learning, 2020, 2020 | 365 | 2020 |
Disentangled Sequential Autoencoder Y Li, S Mandt International Conference on Machine Learning 80, 5670-5679, 2018 | 315 | 2018 |
GP-VAE: Deep Probabilistic Time Series Imputation V Fortuin, D Baranchuk, G Rätsch, S Mandt Artificial Intelligence and Statistics (AISTATS), 2020, 2020 | 277 | 2020 |
Image anomaly detection with generative adversarial networks L Deecke, R Vandermeulen, L Ruff, S Mandt, M Kloft Machine Learning and Knowledge Discovery in Databases: European Conference …, 2019 | 263 | 2019 |
Iterative Amortized Inference J Marino, Y Yue, S Mandt International Conference on Machine Learning 80, 3403--3412, 2018 | 185 | 2018 |
Diffusion probabilistic modeling for video generation R Yang, P Srivastava, S Mandt Entropy 25 (10), 1469, 2023 | 178 | 2023 |
A Variational Analysis of Stochastic Gradient Algorithms S Mandt, MD Hoffman, DM Blei International Conference on Machine Learning 48, 354--363, 2016 | 170 | 2016 |
Exponential Family Embeddings MR Rudolph, FJR Ruiz, S Mandt, DM Blei Neural Information Processing Systems, 2016 | 156 | 2016 |
Neural Transformation Learning for Deep Anomaly Detection Beyond Images C Qiu, T Pfrommer, M Kloft, S Mandt, M Rudolph International Conference on Machine Learning, 2021 | 115 | 2021 |
Improving inference for neural image compression Y Yang, R Bamler, S Mandt Neural Information Processing Systems, 2020 | 108 | 2020 |
Equilibration rates and negative absolute temperatures for ultracold atoms in optical lattices A Rapp, S Mandt, A Rosch Phys. Rev. Lett. 105 (220405), 2010 | 106 | 2010 |
Deep Generative Video Compression J Han, S Lombardo, C Schroers, S Mandt Neural Information Processing Systems, 2019 | 94* | 2019 |
Determinantal Point Processes for Mini-Batch Diversification C Zhang, H Kjellström, S Mandt Uncertainty in Artificial Intelligence, 2017 | 87 | 2017 |
Machine learning in thermodynamics: Prediction of activity coefficients by matrix completion F Jirasek, RAS Alves, J Damay, RA Vandermeulen, R Bamler, M Bortz, ... The journal of physical chemistry letters 11 (3), 981-985, 2020 | 78 | 2020 |
An introduction to neural data compression Y Yang, S Mandt, L Theis Foundations and Trends® in Computer Graphics and Vision 15 (2), 113-200, 2023 | 76 | 2023 |
Quasi-Monte Carlo Variational Inference A Buchholz, F Wenzel, S Mandt International Conference on Machine Learning 80, 668-677, 2018 | 68 | 2018 |