关注
Silvestro Fassari
Silvestro Fassari
Marconi University, Rome
在 uva.es 的电子邮件经过验证
标题
引用次数
引用次数
年份
A remarkable spectral feature of the Schrödinger Hamiltonian of the harmonic oscillator perturbed by an attractive δ'-interaction centred at the origin: double degeneracy and …
S Albeverio, S Fassari, F Rinaldi
J. Phys. A: Math. Theor. 46 (38 (5305)), 2013
602013
On the spectrum of the harmonic oscillator with a delta-type perturbation.
S Fassari, G Inglese
Helv. Phys. Acta 67 (6), 650-659, 1994
451994
On the spectrum of the Schrödinger Hamiltonian of the one-dimensional harmonic oscillator perturbed by two identical attractive point interactions
S Fassari, F Rinaldi
Reports on Mathematical Physics 69 (3), 353-370, 2012
442012
The Hamiltonian of the harmonic oscillator with an attractive δ′-interaction centred at the origin as approximated by the one with a triple of attractive δ-interactions
S Albeverio, S Fassari, F Rinaldi
Journal of Physics A: Mathematical and Theoretical 49 (2), 025302, 2015
402015
Spectroscopy of a one-dimensional V-shaped quantum well with a point impurity
S Fassari, M Gadella, ML Glasser, LM Nieto
Annals of Physics 389, 48-62, 2018
382018
On the spectrum of the Schrödinger Hamiltonian with a particular configuration of three one-dimensional point interactions
S Fassari, F Rinaldi
Reports on Mathematical Physics 64 (3), 367-393, 2009
322009
The discrete spectrum of the spinless one-dimensional Salpeter Hamiltonian perturbed by δ-interactions
S Albeverio, S Fassari, F Rinaldi
Journal of Physics A: Mathematical and Theoretical 48 (18), 185301, 2015
312015
On the spectrum of the harmonic oscillator with a delta-type perturbation. II
S Fassari, G Inglese
Helv. Phys. Acta 70 (6), 858-865, 1997
291997
Spectroscopy of a Three-Dimensional Isotropic Harmonic Oscillator with a Delta-Type Perturbation
S Fassari, G Inglese
Helvetica Physica Acta 69 (2), 130-140, 1996
281996
Spectral properties.....II
S Albeverio, S Fassari, F Rinaldi
Nanosystems: Physics, Chemistry, Mathematics 7 (5), 803-815, 2016
23*2016
Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive δ-impurities symmetrically situated around the origin
S Albeverio, S Fassari, F Rinaldi
Наносистемы: физика, химия, математика 7 (2), 268-289, 2016
232016
Coupling constant thresholds of perturbed periodic Hamiltonians
S Fassari, M Klaus
Journal of Mathematical Physics 39 (9), 4369-4416, 1998
201998
The Birman-Schwinger operator for a parabolic quantum well in a zero-thickness layer in the presence of an attractive Gaussian impurity
S Fassari, S Albeverio, F Rinaldi, M Gadella, LM Nieto
Frontiers in Physics 7, 102, 2019
13*2019
Level crossings of eigenvalues of the Schrödinger Hamiltonian of the isotropic harmonic oscillator perturbed by a central point interaction in different dimensions
S Fassari, M Gadella, ML Glasser, LM Nieto, F Rinaldi
Наносистемы: физика, химия, математика 9 (2), 179-186, 2018
132018
An Estimate Regarding One-Dimensional Point Interactions
S Fassari
Helvetica Physica Acta 68 (2), 121-125, 1995
131995
Spectral properties of the two-dimensional Schrödinger Hamiltonian with various solvable confinements in the presence of a central point perturbation
S Fassari, M Gadella, ML Glasser, LM Nieto, F Rinaldi
Physica Scripta 94 (5), 055202, 2019
122019
On the spectrum of the one-dimensional Schrödinger Hamiltonian perturbed by an attractive Gaussian potential
S Fassari, M Gadella Urquiza, LM Nieto Calzada, F Rinaldi
122017
On some potential applications of the heat equation with a repulsive point interaction to derivative pricing
S FASSARI, F RINALDI
Rendiconti di Matematica, Serie VII 31, 35-52, 2011
122011
A note on the eigenvalues of the Hamiltonian of the harmonic oscillator perturbed by the potential λx2 (1+ gx2)
S Fassari
Reports on Mathematical Physics 37 (2), 283-293, 1996
101996
A note on the discrete spectrum of Gaussian wells (I): the ground state energy in one dimension
G Muchatibaya, S Fassari, F Rinaldi, J Mushanyu
Advances in Mathematical Physics, 2016
82016
系统目前无法执行此操作,请稍后再试。
文章 1–20