关注
Julian Kates-Harbeck
Julian Kates-Harbeck
在 g.harvard.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Predicting disruptive instabilities in controlled fusion plasmas through deep learning
J Kates-Harbeck, A Svyatkovskiy, W Tang
Nature 568 (7753), 526-531, 2019
3232019
Training distributed deep recurrent neural networks with mixed precision on GPU clusters
A Svyatkovskiy, J Kates-Harbeck, W Tang
Proceedings of the Machine Learning on HPC Environments, 1-8, 2017
312017
DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy
ME Fenstermacher, J Abbate, S Abe, T Abrams, M Adams, B Adamson, ...
Nuclear Fusion 62 (4), 042024, 2022
242022
Simplified biased random walk model for RecA-protein-mediated homology recognition offers rapid and accurate self-assembly of long linear arrays of binding sites
J Kates-Harbeck, A Tilloy, M Prentiss
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 88 (1 …, 2013
182013
Tension on dsDNA bound to ssDNA-RecA filaments may play an important role in driving efficient and accurate homology recognition and strand exchange
J Vlassakis, E Feinstein, D Yang, A Tilloy, D Weiller, J Kates-Harbeck, ...
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 87 (3 …, 2013
182013
Evolutionary instability of selfish learning in repeated games
A McAvoy, J Kates-Harbeck, K Chatterjee, C Hilbe
PNAS nexus 1 (4), pgac141, 2022
132022
Fully convolutional spatio-temporal models for representation learning in plasma science
G Dong, KG Felker, A Svyatkovskiy, W Tang, J Kates-Harbeck
Journal of Machine Learning for Modeling and Computing 2 (1), 2021
132021
Simplex-in-cell technique for collisionless plasma simulations
J Kates-Harbeck, S Totorica, J Zrake, T Abel
Journal of Computational Physics 304, 231-251, 2016
112016
Magnetic Nuclear Fusion
J Kates-Harbeck
Physics, 0
4
Social network structure and the spread of complex contagions from a population genetics perspective
J Kates-Harbeck, MM Desai
Physical Review E 108 (2), 024306, 2023
12023
Implementation of AI/DEEP learning disruption predictor into a plasma control system
W Tang, G Dong, J Barr, K Erickson, R Conlin, D Boyer, J Kates‐Harbeck, ...
Contributions to Plasma Physics 63 (5-6), e202200095, 2023
12023
Accelerating progress towards controlled fusion power via deep learning at the largest scale
J KATES-HARBECK
in Nature, 2019
12019
Tackling complexity and nonlinearity in plasmas and networks using artificial intelligence and analytical methods
J Kates-Harbeck
Harvard University, 2019
12019
Highlights from the community white paper``Enhancing US fusion science with data-centric technologies''
D Smith, R Granetz, M Greenwald, J Kates-Harbeck, E Kolemen, ...
APS Division of Plasma Physics Meeting Abstracts 2018, NP11. 132, 2018
12018
Quantifying and propagating uncertainties to enhance real-time disruption prediction with machine learning
C Michoski, J Kates-Harbeck, G Merlo, M Bremer, A Shukla, N Logan, ...
APS Division of Plasma Physics Meeting Abstracts 2018, CM10. 002, 2018
12018
A two-stage citation recommendation system
J Kates-Harbeck, M Haggblade
Stanford University. Kates-Harbeck J. Haggblade M, 2013
12013
Fractional Resonances in Ion Bernstein Wave Heating in a Helicon Plasma Discharge
J Kates-Harbeck
APS Division of Plasma Physics Meeting Abstracts 53, JP9. 081, 2011
12011
Trust based attachment
J Kates-Harbeck, M Nowak
Plos one 18 (8), e0288142, 2023
2023
Tokamak Disruption Predictions Based on Deep Learning Temporal Convolutional Neural Networks
G Dong, K Felker, A Svyatkovskiy, W Tang, J Kates-Harbeck
APS Division of Plasma Physics Meeting Abstracts 2020, BO05. 002, 2020
2020
Deep Learning Studies Linking Tokamak Disruption to Neoclassical Tearing Modes (NTM's)
G Dong, J Kates-Harbeck, N McGreivy, Z Lin, W Tang
APS Division of Plasma Physics Meeting Abstracts 2019, PP10. 106, 2019
2019
系统目前无法执行此操作,请稍后再试。
文章 1–20