关注
Muhammad Usman Akbar
Muhammad Usman Akbar
Department of Biomedical Engineering (IMT), Linköping University, Sweden.
在 liu.se 的电子邮件经过验证
标题
引用次数
引用次数
年份
AIforCOVID: predicting the clinical outcomes in patients with COVID-19 applying AI to chest-X-rays. an italian multicentre study
P Soda, NC D’Amico, J Tessadori, G Valbusa, V Guarrasi, C Bortolotto, ...
Medical image analysis 74, 102216, 2021
842021
News classification based on their headlines: A review
MI Rana, S Khalid, MU Akbar
17th IEEE International Multi Topic Conference 2014, 211-216, 2014
552014
Induced magnetic field analysis for the peristaltic transport of non-Newtonian nanofluid in an annulus
H Sadaf, MU Akbar, S Nadeem
Mathematics and Computers in Simulation 148, 16-36, 2018
512018
Beware of Diffusion Models for Synthesizing Medical Images-a Comparison with Gans in Terms of Memorizing Brain MRI and Chest X-Ray Images
MU Akbar, W Wang, A Eklund
Available at SSRN 4611613, 2023
122023
Automated laser mark segmentation from colored retinal images
AM Syed, MU Akbar, MU Akram, J Fatima
17th IEEE International Multi Topic Conference 2014, 282-286, 2014
122014
Brain tumor segmentation using synthetic MR images-A comparison of GANs and diffusion models
M Usman Akbar, M Larsson, I Blystad, A Eklund
Scientific Data 11 (1), 259, 2024
102024
Addressing signal alterations induced in CT images by deep learning processing: A preliminary phantom study
S Doria, F Valeri, L Lasagni, V Sanguineti, R Ragonesi, MU Akbar, ...
Physica Medica 83, 88-100, 2021
72021
Robust Detection of Exudates Using Fundus Images
AM Syed, MU Akbar, A Ahmed, J Fatima, U Akram
2018 IEEE 21st International Multi-Topic Conference (INMIC), 1-5, 2018
52018
A review on automatic tuberculosis screening using chest radiographs
K Hina, S Khalid, MU Akbar
2016 Sixth International Conference on Innovative Computing Technology …, 2016
52016
Efficient brain age prediction from 3D MRI volumes using 2D projections
J Jönemo, MU Akbar, R Kämpe, JP Hamilton, A Eklund
Brain Sciences 13 (9), 1329, 2023
32023
Does an ensemble of GANs lead to better performance when training segmentation networks with synthetic images?
M Larsson, MU Akbar, A Eklund
arXiv preprint arXiv:2211.04086, 2022
32022
Geodesic Clustering of Positive Definite Matrices For Classification of Mental Disorder Using Brain Functional Connectivity
MA Yamin, J Tessadori, MU Akbar, M Dayan, V Murino, D Sona
2020 International Joint Conference on Neural Networks (IJCNN), 1-5, 2020
32020
Multimodal Segmentation of Medical Images with Heavily Missing Data
MU Akbar, V Murino, D Sona
2021 IEEE EMBS International Conference on Biomedical and Health Informatics …, 2021
22021
Multiple Organs Segmentation in Abdomen CT Scans Using a Cascade of CNNs
MU Akbar, S Aslani, V Murino, D Sona
ICIAP 2019: Image Analysis and Processing – ICIAP 2019 11751, 509-516, 2019
22019
Permeability conditions for the physiological viscous nanofluid: endoscopic analysis for uniform and non-uniform tubes
H Sadaf, MU Akbar, S Nadeem
Journal of the Brazilian Society of Mechanical Sciences and Engineering 39 …, 2017
22017
Synthetic brain tumor images from GANs and diffusion models
MU Akbar, A Eklund
AIDA datahub https://doi. org/10.23698/aida/synthetic/brgandi, 2023
12023
An Overview of OCT Techniques for Detection of Ophthalmic Syndromes
AM Syed, MU Akbar, J Fatima
Applications of Intelligent Technologies in Healthcare, 109-116, 2019
12019
Automated Techniques for Detection and Classification of Diabetic Macular Edema: A Review.
AM Syed, M Faizan, MU Akbar, J Fatima
Asian Journal of Engineering, Sciences & Technology, 2016
12016
lGeneralized super-resolution 4D Flow MRI-using ensemble learning to extend across the cardiovascular system
L Ericsson, A Hjalmarsson, MU Akbar, E Ferdian, M Bonini, B Hardy, ...
Arxiv, 2023
2023
Generalized super-resolution 4D Flow MRI--using ensemble learning to extend across the cardiovascular system
L Ericsson, A Hjalmarsson, MU Akbar, E Ferdian, M Bonini, B Hardy, ...
arXiv preprint arXiv:2311.11819, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20