QSAR modeling based on conformation ensembles using a multi-instance learning approach DV Zankov, M Matveieva, AV Nikonenko, RI Nugmanov, II Baskin, ... Journal of chemical information and modeling 61 (10), 4913-4923, 2021 | 28 | 2021 |
Multiple conformer descriptors for QSAR modeling A Nikonenko, D Zankov, I Baskin, T Madzhidov, P Polishchuk Molecular Informatics 40 (11), 2060030, 2021 | 11 | 2021 |
Multi-instance learning approach to predictive modeling of catalysts enantioselectivity D Zankov, P Polishchuk, T Madzhidov, A Varnek Synlett 32 (18), 1833-1836, 2021 | 9 | 2021 |
Conjugated quantitative structure–property relationship models: application to simultaneous prediction of tautomeric equilibrium constants and acidity of molecules DV Zankov, TI Madzhidov, A Rakhimbekova, TR Gimadiev, RI Nugmanov, ... Journal of Chemical Information and Modeling 59 (11), 4569-4576, 2019 | 9 | 2019 |
Chemical complexity challenge: Is multi‐instance machine learning a solution? D Zankov, T Madzhidov, A Varnek, P Polishchuk Wiley Interdisciplinary Reviews: Computational Molecular Science 14 (1), e1698, 2024 | 7 | 2024 |
Multi-instance learning approach to the modeling of enantioselectivity of conformationally flexible organic catalysts D Zankov, T Madzhidov, P Polishchuk, P Sidorov, A Varnek Journal of Chemical Information and Modeling 63 (21), 6629-6641, 2023 | 4 | 2023 |
Tree Parzen estimator for global geometry optimization: A benchmark and database of experimental gas‐phase structures of organic molecules N Andreadi, D Zankov, K Karpov, A Mitrofanov Journal of Computational Chemistry 43 (21), 1434-1441, 2022 | 4 | 2022 |
Multi-instance learning for structure-activity modeling for molecular properties DV Zankov, MD Shevelev, AV Nikonenko, PG Polishchuk, ... Analysis of Images, Social Networks and Texts: 8th International Conference …, 2020 | 4 | 2020 |
Quantum chemical modeling of superbase-catalyzed reactions of acetophenone and methyl mesityl ketone with acetylene VB Kobychev, VB Orel, DV Zankov, NM Vitkovskaya, BA Trofimov Russian Chemical Bulletin 66, 2227-2233, 2017 | 3 | 2017 |
Conjugated Quantitative Structure‐Property Relationship Models: Prediction of Kinetic Characteristics Linked by the Arrhenius Equation D Zankov, TI Madzhidov, I Baskin, A Varnek Molecular Informatics, 2023 | 1 | 2023 |
SynPlanner: an end-to-end tool for synthesis planning T Akhmetshin, D Zankov, P Gantzer, D Babadeev, A Pinigina, ... | | 2024 |
Modélisation structure-propriété avec des techniques avancées d'apprentissage automatique D Zankov Strasbourg, 2023 | | 2023 |