Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge Computing Z Zhou, X Chen, E Li, L Zeng, K Luo, J Zhang Proceedings of the IEEE, 2019 | 1788 | 2019 |
Edge AI: On-demand accelerating deep neural network inference via edge computing E Li, L Zeng, Z Zhou, X Chen IEEE Transactions on Wireless Communications 19 (1), 447-457, 2019 | 627 | 2019 |
Follow me at the edge: Mobility-aware dynamic service placement for mobile edge computing T Ouyang, Z Zhou, X Chen IEEE Journal on Selected Areas in Communications 36 (10), 2333-2345, 2018 | 472 | 2018 |
Edge intelligence: On-demand deep learning model co-inference with device-edge synergy E Li, Z Zhou, X Chen Proceedings of the 2018 workshop on mobile edge communications, 31-36, 2018 | 403 | 2018 |
HFEL: Joint edge association and resource allocation for cost-efficient hierarchical federated edge learning S Luo, X Chen, Q Wu, Z Zhou, S Yu IEEE Transactions on Wireless Communications 19 (10), 6535-6548, 2020 | 326 | 2020 |
When deep reinforcement learning meets federated learning: Intelligent multitimescale resource management for multiaccess edge computing in 5G ultradense network S Yu, X Chen, Z Zhou, X Gong, D Wu IEEE Internet of Things Journal 8 (4), 2238-2251, 2020 | 263 | 2020 |
Fedhome: Cloud-edge based personalized federated learning for in-home health monitoring Q Wu, X Chen, Z Zhou, J Zhang IEEE Transactions on Mobile Computing 21 (8), 2818-2832, 2020 | 241 | 2020 |
Winning at the starting line: Joint network selection and service placement for mobile edge computing B Gao, Z Zhou, F Liu, F Xu IEEE INFOCOM 2019-IEEE conference on computer communications, 1459-1467, 2019 | 206 | 2019 |
Adaptive user-managed service placement for mobile edge computing: An online learning approach T Ouyang, R Li, X Chen, Z Zhou, X Tang IEEE INFOCOM 2019-IEEE conference on computer communications, 1468-1476, 2019 | 202 | 2019 |
On arbitrating the power-performance tradeoff in SaaS clouds Z Zhou, F Liu, H Jin, B Li, B Li, H Jiang IEEE INFOCOM, 2013 | 167* | 2013 |
Coedge: Cooperative dnn inference with adaptive workload partitioning over heterogeneous edge devices L Zeng, X Chen, Z Zhou, L Yang, J Zhang IEEE/ACM Transactions on Networking 29 (2), 595-608, 2020 | 166 | 2020 |
Efficient resource allocation for on-demand mobile-edge cloud computing X Chen, W Li, S Lu, Z Zhou, X Fu IEEE Transactions on Vehicular Technology 67 (9), 8769-8780, 2018 | 124 | 2018 |
Boomerang: On-demand cooperative deep neural network inference for edge intelligence on the industrial Internet of Things L Zeng, E Li, Z Zhou, X Chen IEEE Network 33 (5), 96-103, 2019 | 121 | 2019 |
Carbon-aware Load Balancing for Geo-distributed Cloud Services Z Zhou, F Liu, Y Xu, R Zou, H Xu, JCS Lui, H Jin IEEE MASCOTS, 2013 | 112 | 2013 |
Online orchestration of cross-edge service function chaining for cost-efficient edge computing Z Zhou, Q Wu, X Chen IEEE Journal on Selected Areas in Communications 37 (8), 1866-1880, 2019 | 109 | 2019 |
Carbon-aware Online Control of Geo-distributed Cloud Services Z Zhou, F Liu, R Zou, J Liu, H Xu, H Jin IEEE Transactions on Parallel & Distributed Computing, 2016 | 84 | 2016 |
When Smart Grid Meets Geo-distributed Cloud: An Auction Approach to Datacenter Demand Response Z Zhou, F Liu, Z Li, H Jin INFOCOM, 2015 Proceedings IEEE, 2015 | 83 | 2015 |
Deep reinforcement learning with spatio-temporal traffic forecasting for data-driven base station sleep control Q Wu, X Chen, Z Zhou, L Chen, J Zhang IEEE/ACM transactions on networking 29 (2), 935-948, 2021 | 74 | 2021 |
CEFL: Online admission control, data scheduling, and accuracy tuning for cost-efficient federated learning across edge nodes Z Zhou, S Yang, L Pu, S Yu IEEE Internet of Things Journal 7 (10), 9341-9356, 2020 | 71 | 2020 |
Age of processing: Age-driven status sampling and processing offloading for edge-computing-enabled real-time IoT applications R Li, Q Ma, J Gong, Z Zhou, X Chen IEEE Internet of Things Journal 8 (19), 14471-14484, 2021 | 65 | 2021 |