mclust 5: clustering, classification and density estimation using Gaussian finite mixture models L Scrucca, M Fop, TB Murphy, AE Raftery The R journal 8 (1), 289, 2016 | 2749 | 2016 |
mclust version 4 for R: normal mixture modeling for model-based clustering, classification, and density estimation C Fraley, AE Raftery, TB Murphy, L Scrucca Technical report 597, 1, 2012 | 1248 | 2012 |
GA: A package for genetic algorithms in R L Scrucca Journal of Statistical Software 53, 1-37, 2013 | 899 | 2013 |
Competing risk analysis using R: an easy guide for clinicians L Scrucca, A Santucci, F Aversa Bone marrow transplantation 40 (4), 381-387, 2007 | 741 | 2007 |
Regression modeling of competing risk using R: an in depth guide for clinicians L Scrucca, A Santucci, F Aversa Bone marrow transplantation 45 (9), 1388-1395, 2010 | 489 | 2010 |
qcc: an R package for quality control charting and statistical process control L Scrucca R News 4 (1), 11--17, 2004 | 299 | 2004 |
MCLUST version 3: an R package for normal mixture modeling and model-based clustering C Fraley, AE Raftery WASHINGTON UNIV SEATTLE DEPT OF STATISTICS, 2006 | 281* | 2006 |
On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution L Scrucca arXiv preprint arXiv:1605.01931, 2016 | 136 | 2016 |
clustvarsel: a package implementing variable selection for Gaussian model-based clustering in R L Scrucca, AE Raftery Journal of Statistical Software 84, 2018 | 97 | 2018 |
Using genetic algorithms in a large nationally representative American sample to abbreviate the Multidimensional Experiential Avoidance Questionnaire BK Sahdra, J Ciarrochi, P Parker, L Scrucca Frontiers in Psychology 7, 189, 2016 | 88 | 2016 |
Dimension reduction for model-based clustering L Scrucca Statistics and Computing 20, 471-484, 2010 | 82 | 2010 |
Robotic right hemicolectomy: analysis of 108 consecutive procedures and multidimensional assessment of the learning curve A Parisi, L Scrucca, J Desiderio, A Gemini, S Guarino, F Ricci, R Cirocchi, ... Surgical Oncology 26 (1), 28-36, 2017 | 71 | 2017 |
Improved initialisation of model-based clustering using Gaussian hierarchical partitions L Scrucca, AE Raftery Advances in data analysis and classification 9, 447-460, 2015 | 71 | 2015 |
Prevalence of carotid stenosis in type 2 diabetic patients asymptomatic for cerebrovascular disease. M De Angelis, L Scrucca, M Leandri, S Mincigrucci, S Bistoni, M Bovi, ... Diabetes, nutrition & metabolism 16 (1), 48-55, 2003 | 71 | 2003 |
mclust: Normal mixture modeling for model-based clustering, classification, and density estimation C Fraley, AE Raftery, L Scrucca | 66 | 2012 |
mclust: Gaussian mixture modelling for model-based clustering, classification, and density estimation C Fraley, AE Raftery, L Scrucca, TB Murphy, M Fop R package version 5 (2), 2016 | 65 | 2016 |
Model-based SIR for dimension reduction L Scrucca Computational Statistics & Data Analysis 55 (11), 3010-3026, 2011 | 60 | 2011 |
Model-based clustering, classification, and density estimation using mclust in R L Scrucca, C Fraley, TB Murphy, AE Raftery Chapman and Hall/CRC, 2023 | 55 | 2023 |
Investigation of parameter uncertainty in clustering using a Gaussian mixture model via jackknife, bootstrap and weighted likelihood bootstrap A O’Hagan, TB Murphy, L Scrucca, IC Gormley Computational Statistics 34 (4), 1779-1813, 2019 | 53* | 2019 |
Clustering multivariate spatial data based on local measures of spatial autocorrelation L Scrucca Quaderni del Dipartimento di Economia, Finanza e Statistica 20 (1), 11, 2005 | 52 | 2005 |