Fractional calculus with applications in mechanics: vibrations and diffusion processes TM Atanackovic, S Pilipovic, B Stankovic, D Zorica John Wiley & Sons, 2014 | 575 | 2014 |
Fractional calculus with applications in mechanics: wave propagation, impact and variational principles TM Atanackovic, S Pilipovic, B Stankovic, D Zorica John Wiley & Sons, 2014 | 200 | 2014 |
Time distributed-order diffusion-wave equation. I. Volterra-type equation TM Atanackovic, S Pilipovic, D Zorica Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2009 | 115 | 2009 |
A diffusion wave equation with two fractional derivatives of different order TM Atanackovic, S Pilipovic, D Zorica Journal of Physics A: Mathematical and Theoretical 40 (20), 5319, 2007 | 114 | 2007 |
Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations TM Atanackovic, S Pilipovic, D Zorica Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2009 | 96 | 2009 |
Properties of the Caputo-Fabrizio fractional derivative and its distributional settings TM Atanacković, S Pilipović, D Zorica Fractional Calculus and Applied Analysis 21 (1), 29-44, 2018 | 82 | 2018 |
On the fractional generalization of Eringenʼs nonlocal elasticity for wave propagation N Challamel, D Zorica, TM Atanacković, DT Spasić Comptes Rendus Mécanique 341 (3), 298-303, 2013 | 76 | 2013 |
Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod TM Atanackovic, S Pilipovic, D Zorica International Journal of Engineering Science 49 (2), 175-190, 2011 | 76 | 2011 |
A model of the viscoelastic behavior of flowable resin composites prior to setting LM Petrovic, DM Zorica, IL Stojanac, VS Krstonosic, MS Hadnadjev, ... Dental Materials 29 (9), 929-934, 2013 | 73 | 2013 |
Complex order fractional derivatives in viscoelasticity TM Atanacković, S Konjik, S Pilipović, D Zorica Mechanics of Time-Dependent Materials 20, 175-195, 2016 | 63 | 2016 |
A non-linear thermo-viscoelastic rheological model based on fractional derivatives for high temperature creep in concrete Y Bouras, D Zorica, TM Atanacković, Z Vrcelj Applied Mathematical Modelling 55, 551–568, 2018 | 62 | 2018 |
The Cattaneo type space-time fractional heat conduction equation T Atanacković, S Konjik, L Oparnica, D Zorica Continuum Mechanics and Thermodynamics 24 (4), 293-311, 2012 | 52 | 2012 |
Waves in fractional Zener type viscoelastic media S Konjik, L Oparnica, D Zorica Journal of Mathematical Analysis and Applications 365 (1), 259-268, 2010 | 49 | 2010 |
Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods TM Atanacković, S Konjik, L Oparnica, D Zorica Abstract and Applied Analysis 2011 (1), 975694, 2011 | 48 | 2011 |
Distributed-order fractional wave equation on a finite domain: creep and forced oscillations of a rod TM Atanackovic, S Pilipovic, D Zorica Continuum Mechanics and Thermodynamics 23, 305-318, 2011 | 46 | 2011 |
Generalized time-fractional telegrapher’s equation in transmission line modeling SM Cvetićanin, D Zorica, MR Rapaić Nonlinear Dynamics 88, 1453-1472, 2017 | 43 | 2017 |
Existence and calculation of the solution to the time distributed order diffusion equation TM Atanackovic, S Pilipovic, D Zorica Physica Scripta 2009 (T136), 014012, 2009 | 43 | 2009 |
Fractional Burgers models in creep and stress relaxation tests A Okuka, D Zorica Applied Mathematical Modelling 77, 1894-1935, 2020 | 36 | 2020 |
Vibrations of an elastic rod on a viscoelastic foundation of complex fractional Kelvin–Voigt type TM Atanackovic, M Janev, S Konjik, S Pilipovic, D Zorica Meccanica 50, 1679-1692, 2015 | 33 | 2015 |
Waves in viscoelastic media described by a linear fractional model S Konjik, L Oparnica, D Zorica Integral Transforms and Special Functions 22 (4-5), 283-291, 2011 | 31 | 2011 |