关注
Tingqi Zhang
Tingqi Zhang
State Grid Liaoning
在 imperial.ac.uk 的电子邮件经过验证
标题
引用次数
引用次数
年份
Using Bayesian deep learning to capture uncertainty for residential net load forecasting
M Sun, T Zhang, Y Wang, G Strbac, C Kang
IEEE Transactions on Power Systems 35 (1), 188-201, 2019
2192019
A confidence-aware machine learning framework for dynamic security assessment
T Zhang, M Sun, JL Cremer, N Zhang, G Strbac, C Kang
IEEE Transactions on Power Systems 36 (5), 3907-3920, 2021
442021
Federated reinforcement learning for smart building joint peer-to-peer energy and carbon allowance trading
D Qiu, J Xue, T Zhang, J Wang, M Sun
Applied Energy 333, 120526, 2023
412023
Hybrid multiagent reinforcement learning for electric vehicle resilience control towards a low-carbon transition
D Qiu, Y Wang, T Zhang, M Sun, G Strbac
IEEE Transactions on Industrial Informatics 18 (11), 8258-8269, 2022
392022
Hierarchical multi-agent reinforcement learning for repair crews dispatch control towards multi-energy microgrid resilience
D Qiu, Y Wang, T Zhang, M Sun, G Strbac
Applied Energy 336, 120826, 2023
272023
A Bayesian deep reinforcement learning-based resilient control for multi-energy micro-gird
T Zhang, M Sun, D Qiu, X Zhang, G Strbac, C Kang
IEEE Transactions on Power Systems 38 (6), 5057-5072, 2023
102023
Short-Term Load Forecasting Based on Mutual Information and BI-LSTM Considering Fluctuation in Importance Values of Features
S Hu, T Zhang, F Yang, Z Gao, Y Ge, Q Zhang, H Sun, K Xu
IEEE Access, 2023
12023
Towards intelligent operation of future power system: Bayesian deep learning based uncertainty modelling technique
T Zhang
Imperial College London, 2022
2022
系统目前无法执行此操作,请稍后再试。
文章 1–8