关注
Nataliya Le Vine
Nataliya Le Vine
未知所在单位机构
在 imperial.ac.uk 的电子邮件经过验证
标题
引用次数
引用次数
年份
A ranking of hydrological signatures based on their predictability in space
N Addor, G Nearing, C Prieto, AJ Newman, N Le Vine, MP Clark
Water Resources Research 54 (11), 8792-8812, 2018
2082018
Flow prediction in ungauged catchments using probabilistic random forests regionalization and new statistical adequacy tests
C Prieto, N Le Vine, D Kavetski, E García, R Medina
Water Resources Research 55 (5), 4364-4392, 2019
872019
The role of rating curve uncertainty in real‐time flood forecasting
D Ocio, N Le Vine, I Westerberg, F Pappenberger, W Buytaert
Water Resources Research 53 (5), 4197-4213, 2017
512017
Diagnosing hydrological limitations of a land surface model: application of JULES to a deep-groundwater chalk basin
N Le Vine, A Butler, N McIntyre, C Jackson
Hydrology and Earth System Sciences 20 (1), 143-159, 2016
292016
Accounting for dependencies in regionalized signatures for predictions in ungauged catchments
S Almeida, N Le Vine, N McIntyre, T Wagener, W Buytaert
Hydrology and Earth System Sciences 20 (2), 887-901, 2016
232016
Selection of hydrological signatures for large-sample hydrology
N Addor, GS Nearing, C Prieto, AJ Newman, N Le Vine, MP Clark
EarthArXiv, 2018
102018
Identification of dominant hydrological mechanisms using Bayesian inference, multiple statistical hypothesis testing, and flexible models
C Prieto, D Kavetski, N Le Vine, C Álvarez, R Medina
Water Resources Research 57 (8), e2020WR028338, 2021
72021
An exploration of Bayesian identification of dominant hydrological mechanisms in ungauged catchments
C Prieto, N Le Vine, D Kavetski, F Fenicia, A Scheidegger, C Vitolo
Water Resources Research 58 (3), e2021WR030705, 2022
62022
Combining information from multiple flood projections in a hierarchical Bayesian framework
N Le Vine
Water Resources Research 52 (4), 3258-3275, 2016
42016
On the information content of hydrological signatures and their relationship to catchment attributes
N Addor, MP Clark, C Prieto, AJ Newman, N Mizukami, G Nearing, ...
EGU General Assembly Conference Abstracts, 9718, 2017
12017
Can we identify dominant hydrological mechanisms in ungauged catchments?
C Prieto, N Le Vine, D Kavetski, F Fenicia, A Scheidegger, C Vitolo
EGU24, 2024
2024
Advances in the identification of dominant hydrological mechanisms in ungauged catchments
C Sierra, N Le Vine, D Kavetski, F Fenicia, A Scheidegger, C Vitolo
AGU23, 2024
2024
An Exploration of Bayesian Identification of Dominant Hydrological Mechanisms in Ungauged Catchments
C Prieto Sierra, N Le Vine, D Kavetski, F Fenicia, A Scheidegger, C Vitolo
American Geophysical Union, 2022
2022
Identification of Dominant Hydrological Mechanisms Using Bayesian Inference, Multiple Statistical Hypothesis Testing, and Flexible Models
C Prieto Sierra, D Kavetski, N Le Vine, C Álvarez Díaz, ...
American Geophysical Union, 2021
2021
Model adequacy tests for improving predictions in ungauged basins
C Prieto, N Le Vine, D Kavetski, C Álvarez, R Medina
EGU General Assembly Conference Abstracts, 205, 2020
2020
Towards reducing model error in flow predictions in ungauged basins via a Bayesian approach
C Prieto, N Le Vine, D Kavetski, E García, C Álvarez, R Medina
11th World Congress on Water Resources nd Environment: Managing Water …, 2019
2019
Wildfires: Triggers, Predictability, and Impact Assessment Posters
C Klose, SV Nghiem, SH Kim, N Le Vine, AJ Soja, J Kim, S Jia
AGU Fall Meeting 2018, 2018
2018
Improving Wildfire Predictability via Machine Learning
N Le Vine, Z El Hjouji, L Lecluse, C Klose
AGU Fall Meeting 2018, 2018
2018
Improving Wildfire Predictability via Machine Learning
C Klose, N Le Vine, Z El Hjouji, L Lecluse
AGU Fall Meeting Abstracts 2018, NH23E-0898, 2018
2018
Identification of dominant hydrological mechanisms for ungauged basins via bayesian approach
C Prieto, N Le Vine, D Kavetski, C Vitolo, E García, R Medina, C Álvarez
EGU General Assembly Conference Abstracts, 12114, 2018
2018
系统目前无法执行此操作,请稍后再试。
文章 1–20