Prediction of antimalarial drug-decorated nanoparticle delivery systems with random forest models DV Urista, DB Carrué, I Otero, S Arrasate, VF Quevedo-Tumailli, M Gestal, ... Biology 9 (8), 198, 2020 | 25 | 2020 |
Chromosome Gene Orientations Inversion Networks (GOINs) of Plasmodium proteome HGD Viviana F. Quevedo-Tumailli, Bernabe Ortega-Tenezaca Journal of Proteome Research 17 (3), 1258-1268, 2018 | 23 | 2018 |
PTML multi-label algorithms: models, software, and applications B Ortega-Tenezaca, V Quevedo-Tumailli, H Bediaga, J Collados, ... Current Topics in Medicinal Chemistry 20 (25), 2326-2337, 2020 | 12 | 2020 |
Palladium-mediated synthesis and biological evaluation of C-10b substituted Dihydropyrrolo [1, 2-b] isoquinolines as antileishmanial agents I Barbolla, L Hernández-Suárez, V Quevedo-Tumailli, D Nocedo-Mena, ... European Journal of Medicinal Chemistry 220, 113458, 2021 | 11 | 2021 |
Simulación de un sistema de refrigeración solar por absorción JA Romero Paguay, T Carbonell Morales, VF Quevedo Tumailli Ingeniería Energética 37 (2), 154-162, 2016 | 9 | 2016 |
IFPTML mapping of drug graphs with protein and chromosome structural networks vs. Pre-clinical assay information for discovery of Antimalarial compounds V Quevedo-Tumailli, B Ortega-Tenezaca, H González-Díaz International journal of molecular sciences 22 (23), 13066, 2021 | 6 | 2021 |
Biomass Potential and Kinetics of Drying Model of Piptocoma discolor (pigüe) as a Source of Renewable Energy Source in Ecuador JE González, B Coronel Espinoza, V Quevedo Tumailli, ... Enfoque UTE 12 (1), 74-90, 2021 | 6 | 2021 |
Web Application for Real Time Data Visualization of Heat Sensor B Ortega-Tenezaca, V Quevedo-Tumailli, VRC Mejía, OG Rubí, EG Yordi, ... Proceedings of MOL2NET, 5909, 2018 | 2 | 2018 |
Innovative Integration of Perturbation Theory into Machine Learning Models for Advanced Prediction in Nanotoxicology and Nanomedicine VF Quevedo-Tumailli, B Ortega-Tenezaca MDPI, 2023 | | 2023 |
NIFPTML: aprendizaje automático por teoría de perturbaciones con fusión de información de redes biomoleculares en química médica, cromosómica, y nanoinformática VF Quevedo-Tumailli | | 2022 |
NAIF. PTML Approach to Artificial Intelligence (AI) Driven Chromosomics in Synthetic Biology V Quevedo-Tumailli, H González-Díaz MDPI, 2021 | | 2021 |
PTML in optimizing preclinical plasmodium assays VF Quevedo-Tumailli, B Ortega-Tenezaca MDPI, 2021 | | 2021 |
Predictive Modeling with Machine Learning and Perturbation Theory B Ortega-Tenezaca, V Quevedo-Tumailli MDPI, 2021 | | 2021 |
Big Data Database Information Fusion Problem in AI-guided Drug Discovery Full Product Life Cycle Analysis V Quevedo, B Ortega-Tenezaca, H González-Díaz MDPI, 2021 | | 2021 |
Predictive models as a useful tool for preclinical assay optimization in antimalarial compounds. V Quevedo, B Ortega-Tenezaca MDPI, 2021 | | 2021 |
Synthesis of Pyrrolo [1, 2-b] isoquinolines through Carbopalladation Initiated Domino Reactions. Evaluation as New Antileishmanial Agents I Barbolla, L Hernández-Suárez, V Quevedo-Tumailli, D Nocedo-Mena, ... MDPI, 2021 | | 2021 |
Modelos PTMLIF en la predicción de sistemas de nanopartículas decoradas con fármacos. V Quevedo, B Ortega-Tenezaca MDPI, 2021 | | 2021 |
Vision IA Microservice for the detection of ID personal data B Ortega-Tenezaca, V Quevedo-Tumailli, E Rivadeniera-Ramos, ... MDPI AG, 2020 | | 2020 |
IF for the dataset of Plasmodium Falciparum V Quevedo, B Ortega-Tenezaca MDPI AG, 2019 | | 2019 |
Batch processing in transformation of continuous variables for PTML Theory B Ortega-Tenezaca, V Quevedo-Tumailli MDPI AG, 2019 | | 2019 |