Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data O Banerjee, L El Ghaoui, A d'Aspremont The Journal of Machine Learning Research 9, 485-516, 2008 | 1883 | 2008 |
A direct formulation for sparse PCA using semidefinite programming A d'Aspremont, L Ghaoui, M Jordan, G Lanckriet Advances in neural information processing systems 17, 2004 | 1236 | 2004 |
Phase recovery, maxcut and complex semidefinite programming I Waldspurger, A d’Aspremont, S Mallat Mathematical Programming 149, 47-81, 2015 | 700 | 2015 |
First-order methods for sparse covariance selection A d'Aspremont, O Banerjee, L El Ghaoui SIAM Journal on Matrix Analysis and Applications 30 (1), 56-66, 2008 | 424 | 2008 |
Optimal Solutions for Sparse Principal Component Analysis. A d'Aspremont, F Bach, L El Ghaoui Journal of Machine Learning Research 9 (7), 2008 | 410 | 2008 |
Smooth optimization with approximate gradient A d'Aspremont SIAM Journal on Optimization 19 (3), 1171-1183, 2008 | 250 | 2008 |
Convex optimization techniques for fitting sparse Gaussian graphical models O Banerjee, LE Ghaoui, A d'Aspremont, G Natsoulis Proceedings of the 23rd international conference on Machine learning, 89-96, 2006 | 215 | 2006 |
Relaxations and randomized methods for nonconvex QCQPs A d’Aspremont, S Boyd EE392o Class Notes, Stanford University 1, 1-16, 2003 | 213 | 2003 |
Predicting abnormal returns from news using text classification R Luss, A d’Aspremont Quantitative Finance 15 (6), 999-1012, 2015 | 193 | 2015 |
Global assessment of oil and gas methane ultra-emitters T Lauvaux, C Giron, M Mazzolini, A d’Aspremont, R Duren, D Cusworth, ... Science 375 (6580), 557-561, 2022 | 189 | 2022 |
Support vector machine classification with indefinite kernels R Luss, A d'Aspremont Advances in neural information processing systems 20, 2007 | 176 | 2007 |
Regularized nonlinear acceleration D Scieur, A d'Aspremont, F Bach Advances In Neural Information Processing Systems 29, 2016 | 159 | 2016 |
Sharpness, restart and acceleration V Roulet, A d'Aspremont Advances in Neural Information Processing Systems 30, 2017 | 138 | 2017 |
Convex relaxations for permutation problems F Fogel, R Jenatton, F Bach, A d'Aspremont Advances in neural information processing systems 26, 2013 | 137 | 2013 |
Acceleration methods A d’Aspremont, D Scieur, A Taylor Foundations and Trends® in Optimization 5 (1-2), 1-245, 2021 | 131 | 2021 |
Integration methods and optimization algorithms D Scieur, V Roulet, F Bach, A d'Aspremont Advances in Neural Information Processing Systems 30, 2017 | 116 | 2017 |
Identifying small mean-reverting portfolios A d'Aspremont Quantitative Finance 11 (3), 351-364, 2011 | 105 | 2011 |
Testing the nullspace property using semidefinite programming A d’Aspremont, L El Ghaoui Mathematical programming 127, 123-144, 2011 | 105 | 2011 |
Optimal complexity and certification of Bregman first-order methods RA Dragomir, AB Taylor, A d’Aspremont, J Bolte Mathematical Programming, 1-43, 2022 | 93 | 2022 |
Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions Z Deng, P Ciais, ZA Tzompa-Sosa, M Saunois, C Qiu, C Tan, T Sun, P Ke, ... Earth System Science Data 14 (4), 1639-1675, 2022 | 93 | 2022 |