Near optimal behavior via approximate state abstraction D Abel, D Hershkowitz, M Littman International Conference on Machine Learning, 2915-2923, 2016 | 192 | 2016 |
Goal-based action priors D Abel, D Hershkowitz, G Barth-Maron, S Brawner, K O'Farrell, ... Proceedings of the International Conference on Automated Planning and …, 2015 | 59 | 2015 |
Round-and message-optimal distributed graph algorithms B Haeupler, DE Hershkowitz, D Wajc Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing …, 2018 | 46 | 2018 |
Finding options that minimize planning time Y Jinnai, D Abel, D Hershkowitz, M Littman, G Konidaris International Conference on Machine Learning, 3120-3129, 2019 | 42 | 2019 |
District-fair participatory budgeting DE Hershkowitz, A Kahng, D Peters, AD Procaccia Proceedings of the AAAI Conference on Artificial Intelligence 35 (6), 5464-5471, 2021 | 26 | 2021 |
Broadcasting in Noisy Radio Networks K Censor-Hillel, B Haeupler, DE Hershkowitz, G Zuzic arXiv preprint arXiv:1705.07369, 2017 | 18 | 2017 |
Tree embeddings for hop-constrained network design B Haeupler, DE Hershkowitz, G Zuzic Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing …, 2021 | 17 | 2021 |
Erasure correction for noisy radio networks K Censor-Hillel, B Haeupler, DE Hershkowitz, G Zuzic arXiv preprint arXiv:1805.04165, 2018 | 15 | 2018 |
Maximum length-constrained flows and disjoint paths: Distributed, deterministic, and fast B Haeupler, DE Hershkowitz, T Saranurak Proceedings of the 55th Annual ACM Symposium on Theory of Computing, 1371-1383, 2023 | 9* | 2023 |
Learning propositional functions for planning and reinforcement learning DE Hershkowitz, J MacGlashan, S Tellex 2015 AAAI Fall Symposium Series, 2015 | 8 | 2015 |
Steiner Point Removal in Series-Parallel Graphs DE Hershkowitz, J Li arXiv preprint arXiv:2104.00750, 2021 | 7 | 2021 |
One tree to rule them all: Poly-logarithmic universal steiner tree O Busch, A Filtser, D Hathcock, DE Hershkowitz, R Rajaraman 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), 60-76, 2023 | 6 | 2023 |
Near-optimal schedules for simultaneous multicasts B Haeupler, DE Hershkowitz, D Wajc arXiv preprint arXiv:2001.00072, 2019 | 4 | 2019 |
Parallel greedy spanners B Haeupler, DE Hershkowitz, Z Tan arXiv preprint arXiv:2304.08892, 2023 | 3 | 2023 |
Adaptive-Adversary-Robust Algorithms via Small Copy Tree Embeddings B Haepler, DE Hershkowitz, G Zuzic 30th Annual European Symposium on Algorithms (ESA 2022) 244, 63, 2022 | 3* | 2022 |
Bad-policy density: A measure of reinforcement learning hardness D Abel, C Allen, D Arumugam, DE Hershkowitz, ML Littman, LLS Wong arXiv preprint arXiv:2110.03424, 2021 | 3 | 2021 |
Reverse greedy is bad for k-center DE Hershkowitz, G Kehne Information Processing Letters 158, 105941, 2020 | 2 | 2020 |
Prepare for the expected worst: Algorithms for reconfigurable resources under uncertainty DE Hershkowitz, R Ravi, S Singla arXiv preprint arXiv:1811.11635, 2018 | 2 | 2018 |
Low-Step Multi-commodity Flow Emulators B Haeupler, DE Hershkowitz, J Li, A Roeyskoe, T Saranurak Proceedings of the 56th Annual ACM Symposium on Theory of Computing, 71-82, 2024 | 1 | 2024 |
It's Hard to HAC with Average Linkage! MH Bateni, L Dhulipala, KN Gowda, DE Hershkowitz, R Jayaram, J Łącki arXiv preprint arXiv:2404.14730, 2024 | 1 | 2024 |