关注
Lennart Linden
Lennart Linden
在 tu-dresden.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
Neural networks meet hyperelasticity: A guide to enforcing physics
L Linden, DK Klein, KA Kalina, J Brummund, O Weeger, M Kästner
Journal of the Mechanics and Physics of Solids 179, 105363, 2023
652023
FE: an efficient data-driven multiscale approach based on physics-constrained neural networks and automated data mining
KA Kalina, L Linden, J Brummund, M Kästner
Computational Mechanics 71 (5), 827-851, 2023
582023
Automated constitutive modeling of isotropic hyperelasticity based on artificial neural networks
KA Kalina, L Linden, J Brummund, P Metsch, M Kästner
Computational Mechanics 69 (1), 213-232, 2022
542022
Neural network-based multiscale modeling of finite strain magneto-elasticity with relaxed convexity criteria
KA Kalina, P Gebhart, J Brummund, L Linden, WC Sun, M Kästner
Computer Methods in Applied Mechanics and Engineering 421, 116739, 2024
202024
Thermodynamically consistent constitutive modeling of isotropic hyperelasticity based on artificial neural networks
L Linden, KA Kalina, J Brummund, P Metsch, M Kästner
PAMM 21 (1), e202100144, 2021
42021
Homogenized data magneto-active polymers
KA Kalina, P Gebhart, J Brummund, L Linden, WC Sun, M Kästner
Technische Universität Dresden, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–6