关注
Clemens Rosenbaum
Clemens Rosenbaum
Research Scientist, ASAPP
在 asapp.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Routing networks: Adaptive selection of non-linear functions for multi-task learning
C Rosenbaum, T Klinger, M Riemer
arXiv preprint arXiv:1711.01239, 2017
2762017
Eigenoption discovery through the deep successor representation
MC Machado, C Rosenbaum, X Guo, M Liu, G Tesauro, M Campbell
arXiv preprint arXiv:1710.11089, 2017
1732017
Routing networks and the challenges of modular and compositional computation
C Rosenbaum, I Cases, M Riemer, T Klinger
arXiv preprint arXiv:1904.12774, 2019
872019
Recursive routing networks: Learning to compose modules for language understanding
I Cases, C Rosenbaum, M Riemer, A Geiger, T Klinger, A Tamkin, O Li, ...
Proceedings of the 2019 Conference of the North American Chapter of the …, 2019
302019
Learning to query, reason, and answer questions on ambiguous texts
X Guo, T Klinger, C Rosenbaum, JP Bigus, M Campbell, B Kawas, ...
International Conference on Learning Representations, 2016
30*2016
Deep reinforcement learning with macro-actions
IP Durugkar, C Rosenbaum, S Dernbach, S Mahadevan
arXiv preprint arXiv:1606.04615, 2016
282016
On the role of weight sharing during deep option learning
M Riemer, I Cases, C Rosenbaum, M Liu, G Tesauro
Proceedings of the AAAI Conference on Artificial Intelligence 34 (04), 5519-5526, 2020
162020
Efficiently learning from highly-diverse data sets
T Klinger, MD Riemer, C Rosenbaum, B Zhou
US Patent App. 16/168,266, 2020
82020
Dispatched routing networks
C Rosenbaum, I Cases, M Riemer, A Geiger, L Karttunen, JD Greene, ...
Technical Report Stanford AI Lab, NLP Group Tech Report 2019-1, 2019
42019
Routing Networks: Adaptive Selection of Non-linear Functions for Multi-Task Learning.(2017)
C Rosenbaum, T Klinger, M Riemer
arXiv preprint cs.LG/1711.01239, 2017
32017
GistScore: Learning Better Representations for In-Context Example Selection with Gist Bottlenecks
S Gupta, C Rosenbaum, ER Elenberg
arXiv preprint arXiv:2311.09606, 2023
22023
Mathematical models of graphical user interfaces
DA Ciolek, CGB Rosenbaum, AP Botta
US Patent 11,567,851, 2023
22023
Dynamic Composition of Functions for Modular Learning
CGB Rosenbaum
22020
e-QRAQ: A Multi-turn Reasoning Dataset and Simulator with Explanations
C Rosenbaum, T Gao, T Klinger
arXiv preprint arXiv:1708.01776, 2017
22017
Routing networks and the challenges of modular and compositional computation, 2019
C Rosenbaum, I Cases, M Riemer, T Klinger
URL https://arxiv. org/abs, 1904
21904
Mathematical models of graphical user interfaces
DA Ciolek, CGB Rosenbaum, AP Botta
US Patent App. 18/089,415, 2023
2023
Processing clusters with mathematical models for message suggestion
WA Wolf, M Sclar, CGB Rosenbaum, CD Fox, KQ Weinberger
US Patent App. 17/246,263, 2022
2022
CEREAL: Few-Sample Clustering Evaluation
NV Nayak, ER Elenberg, C Rosenbaum
arXiv preprint arXiv:2210.00064, 2022
2022
Vector-space representations of graphical user interfaces
CGB Rosenbaum, AP Botta, AI Montero
US Patent App. 16/805,927, 2021
2021
Was man von" Lernen" lernen kann: die Entwicklung eines philosophischen Begriffs
C Rosenbaum
Verlag nicht ermittelbar, 2010
2010
系统目前无法执行此操作,请稍后再试。
文章 1–20