关注
Danny Reidenbach
Danny Reidenbach
Research Scientist, NVIDIA & UC Berkeley
在 berkeley.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
PeakVI: A deep generative model for single-cell chromatin accessibility analysis
T Ashuach, DA Reidenbach, A Gayoso, N Yosef
Cell reports methods 2 (3), 2022
692022
Improving small molecule generation using mutual information machine
D Reidenbach, M Livne, RK Ilango, M Gill, J Israeli
arXiv preprint arXiv:2208.09016, 2022
112022
Coarsenconf: Equivariant coarsening with aggregated attention for molecular conformer generation
D Reidenbach, AS Krishnapriyan
Journal of Chemical Information and Modeling, 2024
72024
EvoSBDD: Latent Evolution for Accurate and Efficient Structure-Based Drug Design
D Reidenbach
ICLR 2024 Workshop on Machine Learning for Genomics Explorations, 2024
32024
BioNeMo Framework: a modular, high-performance library for AI model development in drug discovery
PS John, D Lin, P Binder, M Greaves, V Shah, JS John, A Lange, P Hsu, ...
arXiv preprint arXiv:2411.10548, 2024
12024
General Binding Affinity Guidance for Diffusion Models in Structure-Based Drug Design
Y Jian, C Wu, D Reidenbach, AS Krishnapriyan
arXiv preprint arXiv:2406.16821, 2024
12024
Generating multi-step chemical reaction pathways with black-box optimization
D Reidenbach, CW Coley, K Yang
ICLR 2023-Machine Learning for Drug Discovery workshop, 2023
12023
Targeted Molecular Generation With Latent Reinforcement Learning
R Haddad, E Litsa, Z Liu, X Yu, D Burkhardt, D Reidenbach, T Shimko, ...
2024
Molecule Generation with Fragment Retrieval Augmentation
S Lee, K Kreis, SP Veccham, M Liu, D Reidenbach, S Paliwal, A Vahdat, ...
arXiv preprint arXiv:2411.12078, 2024
2024
Generating Optimal Molecules with Synthesizability and 3D Equivariant Conformational Constraints
A Krishnapriyan, D Klein
2023
Applications of Modular Co-Design for De Novo 3D Molecule Generation
D Reidenbach, F Nikitin, O Isayev, SG Paliwal
NeurIPS 2024 Workshop on AI for New Drug Modalities, 0
系统目前无法执行此操作,请稍后再试。
文章 1–11