MHD Boundary Layers Theory in Sobolev Spaces Without Monotonicity I: Well‐Posedness Theory CJ Liu, F Xie, T Yang Communications on Pure and Applied Mathematics 72 (1), 63-121, 2019 | 83 | 2019 |
A well-posedness theory for the Prandtl equations in three space variables CJ Liu, YG Wang, T Yang Advances in Mathematics 308, 1074-1126, 2017 | 58 | 2017 |
Justification of Prandtl ansatz for MHD boundary layer CJ Liu, F Xie, T Yang SIAM Journal on Mathematical Analysis 51 (3), 2748-2791, 2019 | 57 | 2019 |
On the ill-posedness of the Prandtl equations in three-dimensional space CJ Liu, YG Wang, T Yang Archive for Rational Mechanics and Analysis 220, 83-108, 2016 | 56 | 2016 |
Stability of boundary layers for a viscous hyperbolic system arising from chemotaxis: one-dimensional case Q Hou, CJ Liu, YG Wang, Z Wang SIAM Journal on Mathematical Analysis 50 (3), 3058-3091, 2018 | 42 | 2018 |
Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces CJ Liu, D Wang, F Xie, T Yang Journal of Functional Analysis 279 (7), 108637, 2020 | 39 | 2020 |
Ill-posedness of the Prandtl equations in Sobolev spaces around a shear flow with general decay CJ Liu, T Yang Journal de Mathématiques Pures et Appliquées 108 (2), 150-162, 2017 | 35 | 2017 |
A note on the ill-posedness of shear flow for the MHD boundary layer equations CJ Liu, F Xie, T Yang Science China Mathematics 61, 2065-2078, 2018 | 25 | 2018 |
Global existence of weak solutions to the three-dimensional Prandtl equations with a special structure CJ Liu, YG Wang, T Yang arXiv preprint arXiv:1509.03856, 2015 | 22 | 2015 |
Local-in-time well-posedness for compressible MHD boundary layer Y Huang, CJ Liu, T Yang Journal of Differential Equations 266 (6), 2978-3013, 2019 | 15 | 2019 |
Stability of boundary layers for the nonisentropic compressible circularly symmetric 2D flow CJ Liu, YG Wang SIAM Journal on Mathematical Analysis 46 (1), 256-309, 2014 | 15 | 2014 |
MHD boundary layers in Sobolev spaces without monotonicity. II. convergence theory CJ Liu, F Xie, T Yang arXiv preprint arXiv:1704.00523, 2017 | 11 | 2017 |
Uniform regularity and vanishing viscosity limit for the incompressible non-resistive MHD system with TMF. CJ Liu, F Xie, T Yang Communications on Pure & Applied Analysis 20, 2021 | 10 | 2021 |
Validity of Prandtl expansions for steady MHD in the Sobolev framework CJ Liu, T Yang, Z Zhang SIAM Journal on Mathematical Analysis 55 (3), 2377-2410, 2023 | 6 | 2023 |
Analysis of the Tollmien-Schlichting wave in the Prandtl-Hartmann regime CJ Liu, T Yang, Z Zhang Journal de Mathématiques Pures et Appliquées 165, 58-105, 2022 | 5 | 2022 |
The inviscid limit of the incompressible anisotropic Navier–Stokes equations with the non-slip boundary condition CJ Liu, YG Wang Zeitschrift für angewandte Mathematik und Physik 64 (4), 1187-1225, 2013 | 5 | 2013 |
Derivation of Prandtl boundary layer equations for the incompressible Navier–Stokes equations in a curved domain CJ Liu, YG Wang Applied Mathematics Letters 34, 81-85, 2014 | 4 | 2014 |
Study of boundary layers in compressible non-isentropic flows CJ Liu, YG Wang, T Yang Methods and Applications of Analysis 28 (4), 453-466, 2021 | 2 | 2021 |
Magneto-micropolar boundary layers theory in Sobolev spaces without monotonicity: well-posedness and convergence theory X Lin, C Liu, T Zhang Calculus of Variations and Partial Differential Equations 63 (3), 76, 2024 | 1 | 2024 |
Local well-posedness of solutions to the boundary layer equations for compressible two-fluid flow F Long, L Cheng-Jie, R Lizhi Electronic Research Archive 29 (6), 4009-4050, 2021 | 1 | 2021 |