wav2vec: Unsupervised Pre-training for Speech Recognition S Schneider, A Baevski, R Collobert, M Auli Interspeech 2019, 2019 | 1439 | 2019 |
vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations A Baevski*, S Schneider*, M Auli International Conference on Learning Representations (ICLR), 2019 | 666 | 2019 |
Improving robustness against common corruptions by covariate shift adaptation S Schneider*, E Rusak*, L Eck, O Bringmann, W Brendel, M Bethge Advances in Neural Information Processing Systems 34, 2020 | 424 | 2020 |
Multi-animal pose estimation, identification and tracking with DeepLabCut J Lauer, M Zhou, S Ye, W Menegas, S Schneider, T Nath, MM Rahman, ... Nature Methods 19 (4), 496-504, 2022 | 234 | 2022 |
Contrastive Learning Inverts the Data Generating Process RS Zimmermann*, Y Sharma*, S Schneider*, M Bethge, W Brendel 38th International Conference on Machine Learning (ICML), 2021 | 197 | 2021 |
A Primer on Motion Capture with Deep Learning: Principles, Pitfalls, and Perspectives A Mathis, S Schneider, J Lauer, MW Mathis Neuron 108 (1), 44-65, 2020 | 179 | 2020 |
Learnable latent embeddings for joint behavioral and neural analysis S Schneider*, JH Lee*, MW Mathis Nature 617, 360–368, 2023 | 139 | 2023 |
Pretraining boosts out-of-domain robustness for pose estimation A Mathis*, T Biasi*, S Schneider, M Yüksekgönül, B Rogers, M Bethge, ... Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2021 | 132 | 2021 |
Iron-sequestering nanocompartments as multiplexed Electron Microscopy gene reporters F Sigmund, S Pettinger, M Kube, F Schneider, M Schifferer, S Schneider, ... ACS nano 13 (7), 8114-8123, 2019 | 42 | 2019 |
Context-based Normalization of Histological Stains using Deep Convolutional Features D Bug*, S Schneider*, A Grote, E Oswald, F Feuerhake, J Schüler, ... Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical …, 2017 | 40 | 2017 |
NeuBtracker — imaging neurobehavioral dynamics in freely behaving fish P Symvoulidis, A Lauri, A Stefanoiu, M Cappetta, S Schneider, H Jia, ... Nature Methods 14 (11), 1079-1082, 2017 | 37 | 2017 |
If your data distribution shifts, use self-learning E Rusak*, S Schneider*, G Pachitariu, L Eck, PV Gehler, O Bringmann, ... Transactions of Machine Learning Research (TMLR), 2021 | 27* | 2021 |
Unsupervised Object Learning via Common Fate M Tangemann, S Schneider, J von Kügelgen, F Locatello, P Gehler, ... 2nd conference on Causal Learning and Reasoning (CLeaR) 2023, 2021 | 18 | 2021 |
SuperAnimal models pretrained for plug-and-play analysis of animal behavior S Ye, A Filippova, J Lauer, M Vidal, S Schneider, T Qiu, A Mathis, ... arXiv preprint arXiv:2203.07436, 2022 | 12 | 2022 |
RDumb: A simple approach that questions our progress in continual test-time adaptation O Press, S Schneider, M Kümmerer, M Bethge Advances in Neural Information Processing Systems 36, 2024 | 10 | 2024 |
ImageNet-D: A new challenging robustness dataset inspired by domain adaptation E Rusak*, S Schneider*, PV Gehler, O Bringmann, W Brendel, M Bethge ICML 2022 Shift Happens Workshop, 2022 | 7 | 2022 |
Motor control: Neural correlates of optimal feedback control theory MW Mathis, S Schneider Current Biology 31 (7), R356-R358, 2021 | 6 | 2021 |
Salad: A Toolbox for Semi-supervised Adaptive Learning Across Domains S Schneider, AS Ecker, JH Macke, M Bethge NeurIPS 2018 Machine Learning Open Source Software Workshop, 2018 | 6 | 2018 |
Out-of-distribution generalization of internal models is correlated with reward KS Mann, S Schneider, A Chiappa, JH Lee, M Bethge, A Mathis, ... Self-Supervision for Reinforcement Learning Workshop-ICLR 2021, 2021 | 5 | 2021 |
Multi-Task Generalization and Adaptation between Noisy Digit Datasets: An Empirical Study S Schneider, AS Ecker, JH Macke, M Bethge NeurIPS 2018 Continual Learning Workshop, 2018 | 4 | 2018 |