关注
Denis Kuznedelev
Denis Kuznedelev
在 skoltech.ru 的电子邮件经过验证
标题
引用次数
引用次数
年份
A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
O Platonov, D Kuznedelev, M Diskin, A Babenko, L Prokhorenkova
arXiv preprint arXiv:2302.11640, 2023
1232023
Spqr: A sparse-quantized representation for near-lossless llm weight compression
T Dettmers, R Svirschevski, V Egiazarian, D Kuznedelev, E Frantar, ...
arXiv preprint arXiv:2306.03078, 2023
972023
Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics
VV Braguta, AY Kotov, DD Kuznedelev, AA Roenko
Physical Review D 103 (9), 094515, 2021
542021
Study of the confinement/deconfinement phase transition in rotating lattice SU (3) gluodynamics
VV Braguta, AY Kotov, DD Kuznedelev, AA Roenko
JETP Letters 112, 6-12, 2020
342020
Characterizing graph datasets for node classification: Beyond homophily-heterophily dichotomy
O Platonov, D Kuznedelev, A Babenko, L Prokhorenkova
arXiv preprint arXiv:2209.06177 21, 2022
282022
Lattice study of QCD at finite chiral density: topology and confinement
N Astrakhantsev, VV Braguta, AY Kotov, DD Kuznedelev, AA Nikolaev
The European Physical Journal A 57 (1), 15, 2021
192021
Extreme compression of large language models via additive quantization
V Egiazarian, A Panferov, D Kuznedelev, E Frantar, A Babenko, D Alistarh
arXiv preprint arXiv:2401.06118, 2024
152024
Characterizing graph datasets for node classification: Homophily-heterophily dichotomy and beyond
O Platonov, D Kuznedelev, A Babenko, L Prokhorenkova
Advances in Neural Information Processing Systems 36, 2024
132024
Lattice study of the confinement/deconfinement transition in rotating gluodynamics
VV Braguta, AY Kotov, DD Kuznedelev, AA Roenko
arXiv preprint arXiv:2110.12302, 2021
132021
Sparse finetuning for inference acceleration of large language models
E Kurtic, D Kuznedelev, E Frantar, M Goin, D Alistarh
arXiv preprint arXiv:2310.06927, 2023
62023
Lattice study of QCD properties under extreme conditions: temperature, density, rotation, and magnetic field
NY Astrakhantsev, VV Braguta, NV Kolomoyets, AY Kotov, ...
Physics of Particles and Nuclei 52, 536-541, 2021
62021
Accurate neural network pruning requires rethinking sparse optimization
D Kuznedelev, E Kurtic, E Iofinova, E Frantar, A Peste, D Alistarh
arXiv preprint arXiv:2308.02060, 2023
42023
A view of mini-batch SGD via generating functions: conditions of convergence, phase transitions, benefit from negative momenta
M Velikanov, D Kuznedelev, D Yarotsky
arXiv preprint arXiv:2206.11124, 2022
42022
Evaluating robustness and uncertainty of graph models under structural distributional shifts
G Bazhenov, D Kuznedelev, A Malinin, A Babenko, L Prokhorenkova
Advances in Neural Information Processing Systems 36, 2024
32024
PV-Tuning: Beyond Straight-Through Estimation for Extreme LLM Compression
V Malinovskii, D Mazur, I Ilin, D Kuznedelev, K Burlachenko, K Yi, ...
arXiv preprint arXiv:2405.14852, 2024
22024
Cap: Correlation-aware pruning for highly-accurate sparse vision models
D Kuznedelev, E Kurtić, E Frantar, D Alistarh
Advances in Neural Information Processing Systems 36, 2024
22024
ovit: An accurate second-order pruning framework for vision transformers
D Kuznedelev, E Kurtic, E Frantar, D Alistarh
22022
Does Diffusion Beat GAN in Image Super Resolution?
D Kuznedelev, V Startsev, D Shlenskii, S Kastryulin
arXiv preprint arXiv:2405.17261, 2024
2024
YaART: Yet Another ART Rendering Technology
S Kastryulin, A Konev, A Shishenya, E Lyapustin, A Khurshudov, ...
arXiv preprint arXiv:2404.05666, 2024
2024
Vision Models Can Be Efficiently Specialized via Few-Shot Task-Aware Compression
D Kuznedelev, S Tabesh, K Noorbakhsh, E Frantar, S Beery, E Kurtic, ...
arXiv preprint arXiv:2303.14409, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20