The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement FH Hamker Cerebral cortex 15 (4), 431-447, 2005 | 282 | 2005 |
A dynamic model of how feature cues guide spatial attention FH Hamker Vision research 44 (5), 501-521, 2004 | 180 | 2004 |
Computational models of basal-ganglia pathway functions: focus on functional neuroanatomy H Schroll, FH Hamker Frontiers in systems neuroscience 7, 122, 2013 | 174 | 2013 |
Life-long learning cell structures—continuously learning without catastrophic interference FH Hamker Neural Networks 14 (4-5), 551-573, 2001 | 140 | 2001 |
The peri-saccadic perception of objects and space FH Hamker, M Zirnsak, D Calow, M Lappe PLoS computational biology 4 (2), e31, 2008 | 132 | 2008 |
ANNarchy: a code generation approach to neural simulations on parallel hardware J Vitay, HÜ Dinkelbach, FH Hamker Frontiers in neuroinformatics 9, 19, 2015 | 112 | 2015 |
Functional segregation of basal ganglia pathways in Parkinson’s disease WJ Neumann, H Schroll, AL de Almeida Marcelino, A Horn, S Ewert, ... Brain 141 (9), 2655-2669, 2018 | 111 | 2018 |
The reentry hypothesis: linking eye movements to visual perception FH Hamker Journal of Vision 3 (11), 14-14, 2003 | 111 | 2003 |
The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision FH Hamker Computer Vision and Image Understanding 100 (1-2), 64-106, 2005 | 108 | 2005 |
Comparing neural networks: a benchmark on growing neural gas, growing cell structures, and fuzzy ARTMAP D Heinke, FH Hamker IEEE transactions on neural networks 9 (6), 1279-1291, 1998 | 90 | 1998 |
Working memory and response selection: a computational account of interactions among cortico-basalganglio-thalamic loops H Schroll, J Vitay, FH Hamker Neural Networks 26, 59-74, 2012 | 82 | 2012 |
V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field FH Hamker, M Zirnsak Neural Networks 19 (9), 1371-1382, 2006 | 72 | 2006 |
Modeling feature-based attention as an active top-down inference process FH Hamker BioSystems 86 (1-3), 91-99, 2006 | 71 | 2006 |
Computational models of spatial updating in peri-saccadic perception FH Hamker, M Zirnsak, A Ziesche, M Lappe Philosophical Transactions of the Royal Society B: Biological Sciences 366 …, 2011 | 67 | 2011 |
Neuro-cognitive mechanisms of conscious and unconscious visual perception: From a plethora of phenomena to general principles M Kiefer, U Ansorge, JD Haynes, F Hamker, U Mattler, R Verleger, ... Advances in Cognitive Psychology 7, 55, 2011 | 64 | 2011 |
Dysfunctional and compensatory synaptic plasticity in P arkinson's disease H Schroll, J Vitay, FH Hamker European Journal of Neuroscience 39 (4), 688-702, 2014 | 63 | 2014 |
Attentional selection of noncontiguous locations: The spotlight is only transiently “split” J Dubois, FH Hamker, R VanRullen Journal of Vision 9 (5), 3-3, 2009 | 60 | 2009 |
The spatial distribution of receptive field changes in a model of peri-saccadic perception: predictive remapping and shifts towards the saccade target M Zirnsak, M Lappe, FH Hamker Vision research 50 (14), 1328-1337, 2010 | 56 | 2010 |
Split of spatial attention as predicted by a systems‐level model of visual attention M Zirnsak, F Beuth, FH Hamker European Journal of Neuroscience 33 (11), 2035-2045, 2011 | 44 | 2011 |
Predictions of a model of spatial attention using sum-and max-pooling functions FH Hamker Neurocomputing 56, 329-343, 2004 | 44 | 2004 |