An optimal adaptive wavelet method without coarsening of the iterands T Gantumur, H Harbrecht, R Stevenson Mathematics of computation 76 (258), 615-629, 2007 | 122 | 2007 |
Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions M Holst, G Nagy, G Tsogtgerel Communications in Mathematical Physics 288 (2), 547-613, 2009 | 95 | 2009 |
Adaptive boundary element methods with convergence rates T Gantumur Numerische Mathematik 124, 471-516, 2013 | 65 | 2013 |
Analysis of a general family of regularized Navier–Stokes and MHD models M Holst, E Lunasin, G Tsogtgerel Journal of Nonlinear Science 20 (5), 523-567, 2010 | 61 | 2010 |
Far-from-Constant Mean Curvature Solutions of Einstein’s Constraint Equations<? format?> with Positive Yamabe Metrics M Holst, G Nagy, G Tsogtgerel Physical Review Letters 100 (16), 161101, 2008 | 44 | 2008 |
Computation of differential operators in wavelet coordinates T Gantumur, R Stevenson Mathematics of computation 75 (254), 697-709, 2006 | 36 | 2006 |
Computation of singular integral operators in wavelet coordinates T Gantumur, RP Stevenson Computing 76, 77-107, 2006 | 29 | 2006 |
The Lichnerowicz equation on compact manifolds with boundary M Holst, G Tsogtgerel Classical and Quantum Gravity 30 (20), 205011, 2013 | 26 | 2013 |
An optimal adaptive wavelet method for nonsymmetric and indefinite elliptic problems T Gantumur Journal of computational and applied mathematics 211 (1), 90-102, 2008 | 25 | 2008 |
Convergence of discrete exterior calculus approximations for Poisson problems E Schulz, G Tsogtgerel Discrete & Computational Geometry 63, 346-376, 2020 | 20 | 2020 |
Local convergence of adaptive methods for nonlinear partial differential equations M Holst, G Tsogtgerel, Y Zhu arXiv preprint arXiv:1001.1382, 2010 | 19 | 2010 |
Non-CMC solutions of the Einstein constraint equations on compact manifolds with apparent horizon boundaries M Holst, C Meier, G Tsogtgerel Communications in Mathematical Physics 357, 467-517, 2018 | 15* | 2018 |
Adaptivity of a B-spline based finite-element method for modeling wind-driven ocean circulation I Al Balushi, W Jiang, G Tsogtgerel, TY Kim Computer Methods in Applied Mechanics and Engineering 332, 1-24, 2018 | 12 | 2018 |
On the convergence theory of adaptive mixed finite element methods for the stokes problem T Gantumur arXiv preprint arXiv:1403.0895, 2014 | 9 | 2014 |
On the consistency of the combinatorial codifferential D Arnold, R Falk, J Guzmán, G Tsogtgerel Transactions of the American Mathematical Society 366 (10), 5487-5502, 2014 | 8 | 2014 |
Convergence rates of adaptive methods, Besov spaces, and multilevel approximation T Gantumur Foundations of Computational Mathematics 17 (4), 917-956, 2017 | 7 | 2017 |
Analytical study of generalized α-models of turbulence M Holst, E Lunasin, G Tsotgtgerel Journal of Nonlinear Science 20 (5), 523-567, 2010 | 5 | 2010 |
Polyharmonic splines interpolation on scattered data in 2D and 3D with applications K Rubasinghe, G Yao, J Niu, G Tsogtgerel Engineering Analysis with Boundary Elements 156, 240-250, 2023 | 4 | 2023 |
Adaptive wavelet algorithms for solving operator equations T Gantumur Utrecht University, 2006 | 4 | 2006 |
Solving nonlinear elliptic PDEs in 2D and 3D using polyharmonic splines and low-degree of polynomials K Rubasinghe, G Yao, W Li, G Tsogtgerel International Journal of Computational Methods 20 (08), 2250051, 2023 | 3 | 2023 |