An invitation to higher gauge theory JC Baez, J Huerta General Relativity and Gravitation 43, 2335-2392, 2011 | 252 | 2011 |
The algebra of grand unified theories J Baez, J Huerta Bulletin of the American Mathematical Society 47 (3), 483-552, 2010 | 247 | 2010 |
Division algebras and supersymmetry I JC Baez, J Huerta Superstrings, geometry, topology, and C*-algebras 81, 65-80, 2009 | 87 | 2009 |
Division algebras and supersymmetry II JC Baez, J Huerta | 72 | 2011 |
Real ADE-equivariant (co) homotopy and Super M-branes J Huerta, H Sati, U Schreiber Communications in Mathematical Physics 371 (2), 425-524, 2019 | 45 | 2019 |
G 2 AND THE ROLLING BALL JC Baez, J Huerta Transactions of the American Mathematical Society, 5257-5293, 2014 | 44 | 2014 |
The strangest numbers in string theory JC Baez, J Huerta Scientific American 304 (5), 60-65, 2011 | 38 | 2011 |
M-theory from the superpoint J Huerta, U Schreiber Letters in Mathematical Physics 108, 2695-2727, 2018 | 26 | 2018 |
Division algebras and supersymmetry III J Huerta Advances in Theoretical and Mathematical Physics 16 (5), 1485-1589, 2012 | 26 | 2012 |
Division algebras, supersymmetry and higher gauge theory J Huerta arXiv preprint arXiv:1106.3385, 2011 | 24 | 2011 |
Superstrings, Geometry, Topology, and C*-Algebras JC Baez, J Huerta, RS Doran, G Friedman, J Rosenberg AMS 81, 65, 2010 | 14 | 2010 |
The magic square of Lie groups: The 2× 2 case T Dray, J Huerta, J Kincaid Letters in Mathematical Physics 104, 1445-1468, 2014 | 11 | 2014 |
The 2× 2 Lie group magic square T Dray, J Huerta, J Kincaid Lett. Math. Phys 104 (1445-1468), 42, 2014 | 7 | 2014 |
How Space‐Times Emerge from the Superpoint: LMS/EPSRC Durham Symposium on Higher Structures in M‐Theory J Huerta Fortschritte der Physik 67 (8-9), 1910009, 2019 | 6 | 2019 |
Bundle gerbes on supermanifolds J Huerta arXiv preprint arXiv:2012.15813, 2020 | 3 | 2020 |
Des octonions pour la théorie des cordes J Baez, J Huerta Pour la science (Imprimé), 70-75, 2011 | 3 | 2011 |
Introducing the quaternions J Huerta Department of Mathematics UC Riverside, Fullerton College, 0 | 3 | |
Differential Operators Homotopy Perturbation Method (DOHPM): an automated selection procedure for Adjustment Parameters. U Filobello-Nino, H Vazquez-Leal, B Benhammouda, A Perez-Sesma, ... Appl. Math 11 (6), 1585-1595, 2017 | 2 | 2017 |
Octoniones y teoría de cuerdas JC Baez, J Huerta Investigación y ciencia, 38-43, 2011 | 2 | 2011 |
Poincar\'e Duality for Supermanifolds, Higher Cartan Geometry and Geometric Supergravity K Eder, J Huerta, S Noja arXiv preprint arXiv:2312.05224, 2023 | | 2023 |