关注
Richard McKinley
Richard McKinley
Forschungsleiter (Director of Research), Neuroradiology, Inselspi
在 insel.ch 的电子邮件经过验证
标题
引用次数
引用次数
年份
Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge
S Bakas, M Reyes, A Jakab, S Bauer, M Rempfler, A Crimi, RT Shinohara, ...
arXiv preprint arXiv:1811.02629, 2018
19352018
ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI
O Maier, BH Menze, J Von der Gablentz, L Häni, MP Heinrich, M Liebrand, ...
Medical image analysis 35, 250-269, 2017
5112017
Standardized assessment of automatic segmentation of white matter hyperintensities and results of the WMH segmentation challenge
HJ Kuijf, JM Biesbroek, J De Bresser, R Heinen, S Andermatt, M Bento, ...
IEEE transactions on medical imaging 38 (11), 2556-2568, 2019
2892019
Objective evaluation of multiple sclerosis lesion segmentation using a data management and processing infrastructure
O Commowick, A Istace, M Kain, B Laurent, F Leray, M Simon, SC Pop, ...
Scientific reports 8 (1), 13650, 2018
2522018
Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation
R McKinley, R Meier, R Wiest
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries …, 2019
2082019
Federated learning enables big data for rare cancer boundary detection
S Pati, U Baid, B Edwards, M Sheller, SH Wang, GA Reina, P Foley, ...
Nature communications 13 (1), 7346, 2022
1742022
ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI
S Winzeck, A Hakim, R McKinley, JA Pinto, V Alves, C Silva, M Pisov, ...
Frontiers in neurology 9, 679, 2018
1722018
Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation
S Pereira, R Meier, R McKinley, R Wiest, V Alves, CA Silva, M Reyes
Medical image analysis 44, 228-244, 2018
1082018
Relevance of the cerebral collateral circulation in ischaemic stroke: time is brain, but collaterals set the pace
S Jung, R Wiest, J Gralla, R McKinley, HP Mattle, D Liebeskind
Swiss medical weekly 147 (4950), w14538-w14538, 2017
1022017
Fully automated stroke tissue estimation using random forest classifiers (FASTER)
R McKinley, L Häni, J Gralla, M El-Koussy, S Bauer, M Arnold, U Fischer, ...
Journal of Cerebral Blood Flow & Metabolism 37 (8), 2728-2741, 2017
932017
Triplanar ensemble of 3D-to-2D CNNs with label-uncertainty for brain tumor segmentation
R McKinley, M Rebsamen, R Meier, R Wiest
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries …, 2020
832020
Stroke lesion outcome prediction based on MRI imaging combined with clinical information
A Pinto, R Mckinley, V Alves, R Wiest, CA Silva, M Reyes
Frontiers in neurology 9, 1060, 2018
822018
Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks
R McKinley, R Wepfer, F Aschwanden, L Grunder, R Muri, C Rummel, ...
Scientific reports 11 (1), 1087, 2021
752021
Towards uncertainty-assisted brain tumor segmentation and survival prediction
A Jungo, R McKinley, R Meier, U Knecht, L Vera, J Pérez-Beteta, ...
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries …, 2018
722018
Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence
R McKinley, R Wepfer, L Grunder, F Aschwanden, T Fischer, C Friedli, ...
NeuroImage: Clinical, 102104, 2019
712019
Nabla-net: A deep dag-like convolutional architecture for biomedical image segmentation
R McKinley, R Wepfer, T Gundersen, F Wagner, A Chan, R Wiest, ...
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries …, 2016
682016
Automatic quality control in clinical 1H MRSI of brain cancer
N Pedrosa de Barros, R McKinley, U Knecht, R Wiest, J Slotboom
NMR in Biomedicine 29 (5), 563-575, 2016
442016
QU-BraTS: MICCAI BraTS 2020 Challenge on QuantifyingUncertainty in Brain Tumor Segmentation-Analysis of Ranking Scores and Benchmarking Results
R Mehta, A Filos, U Baid, C Sako, R McKinley, M Rebsamen, K Dätwyler, ...
Journal of Machine Learning for Biomedical Imaging 1, 2022
422022
Direct cortical thickness estimation using deep learning‐based anatomy segmentation and cortex parcellation
M Rebsamen, C Rummel, M Reyes, R Wiest, R McKinley
Human brain mapping 41 (17), 4804-4814, 2020
412020
Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient
F Kofler, I Ezhov, F Isensee, F Balsiger, C Berger, M Koerner, B Demiray, ...
arXiv preprint arXiv:2103.06205, 2021
392021
系统目前无法执行此操作,请稍后再试。
文章 1–20