Pan-peptide meta learning for T-cell receptor–antigen binding recognition Y Gao, Y Gao, Y Fan, C Zhu, Z Wei, C Zhou, G Chuai, Q Chen, H Zhang, ... Nature Machine Intelligence 5 (3), 236-249, 2023 | 52 | 2023 |
Reply to: The pitfalls of negative data bias for the T-cell epitope specificity challenge Y Gao, Y Gao, K Dong, S Wu, Q Liu Nature Machine Intelligence 5 (10), 1063–1065 (2023), 2023 | 15 | 2023 |
Integrating multiple references for single-cell assignment B Duan, S Chen, X Chen, C Zhu, C Tang, S Wang, Y Gao, S Fu, Q Liu Nucleic acids research 49 (14), e80-e80, 2021 | 15 | 2021 |
Privacy-preserving integration of multiple institutional data for single-cell type identification with scPrivacy S Chen, B Duan, C Zhu, C Tang, S Wang, Y Gao, S Fu, L Fan, Q Yang, ... Science China Life Sciences 66 (5), 1183-1195, 2023 | 8 | 2023 |
An ensemble strategy to predict prognosis in ovarian cancer based on gene modules YC Gao, XH Zhou, W Zhang Frontiers in genetics 10, 366, 2019 | 8 | 2019 |
Neo-epitope identification by weakly-supervised peptide-TCR binding prediction Y Gao, Y Gao, W Li, S Wu, F Xing, C Zhou, S Fu, G Chuai, Q Chen, ... bioRxiv, 2023.08. 02.550128, 2023 | 2 | 2023 |
Unified cross-modality integration and analysis of T cell receptors and T cell transcriptomes by low-resource-aware representation learning Y Gao, K Dong, Y Gao, X Jin, J Yang, G Yan, Q Liu Cell Genomics 4 (5), 2024 | | 2024 |
Foundation models in molecular biology Y Si, J Zou, Y Gao, G Chuai, Q Liu, L Chen Biophysics Reports 10, 1-17, 2024 | | 2024 |
PerturBase: a comprehensive database for single-cell perturbation data analysis and visualization Zhiting Wei, Duanmiao Si, Bin Duan, Yicheng Gao, Qian Yu, Ling Guo, Qi Liu bioRxiv, 2024.02. 03.578767, 2024 | | 2024 |
Toward subtask decomposition-based learning and benchmarking for genetic perturbation outcome prediction and beyond Y Gao, Z Wei, K Dong, J Yang, G Chuai, Q Liu bioRxiv, 2024.01. 17.576034, 2024 | | 2024 |
Unified cross-modality integration and analysis of T-cell receptors and T-cell transcriptomes Y Gao, K Dong, Y Gao, X Jin, Q Liu bioRxiv, 2023.08. 19.553790, 2023 | | 2023 |