关注
Leonardo Felipe Maldaner
Leonardo Felipe Maldaner
Especialista Desenvolvimento Agronômico, Solinftec
在 alumni.usp.br 的电子邮件经过验证
标题
引用次数
引用次数
年份
Carrot yield mapping: A precision agriculture approach based on machine learning
MCF Wei, LF Maldaner, PMN Ottoni, JP Molin
Ai 1 (2), 229-241, 2020
782020
Sugarcane yield mapping using high-resolution imagery data and machine learning technique
TF Canata, MCF Wei, LF Maldaner, JP Molin
Remote Sensing 13 (2), 232, 2021
652021
Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches
LF Maldaner, L de Paula Corrêdo, TF Canata, JP Molin
Computers and Electronics in Agriculture 181, 105945, 2021
502021
Data processing within rows for sugarcane yield mapping
LF Maldaner, JP Molin
Scientia Agricola 77, e20180391, 2019
372019
Simplifying sample preparation for soil fertility analysis by X-ray fluorescence spectrometry
TR Tavares, LC Nunes, EEN Alves, E Almeida, LF Maldaner, FJ Krug, ...
Sensors 19 (23), 5066, 2019
332019
Sugarcane harvester for in-field data collection: State of the art, its applicability and future perspectives
LP Corredo, TF Canata, LF Maldaner, JJA de Lima, JP Molin
Sugar Tech 23 (1), 1-14, 2021
222021
Precision agriculture and the digital contributions for site-specific management of the fields
JP Molin, HC Bazame, L Maldaner, LP Corredo, M Martello, M Martello
Revista Ciência Agronômica 51 (spe), e20207720, 2020
222020
A system for plant detection using sensor fusion approach based on machine learning model
LF Maldaner, JP Molin, TF Canata, M Martello
Computers and Electronics in Agriculture 189, 106382, 2021
172021
Methodology to filter out outliers in high spatial density data to improve maps reliability
LF Maldaner, JP Molin, M Spekken
Scientia Agricola 79 (1), e20200178, 2021
162021
Sensor fusion with NARX neural network to predict the mass flow in a sugarcane harvester
JJA Lima, LF Maldaner, JP Molin
Sensors 21 (13), 4530, 2021
152021
A statistical approach to static and dynamic tests for Global Navigation Satellite Systems receivers used in agricultural operations
LF Maldaner, TF Canata, CTS Dias, JP Molin
Scientia Agricola 78, e20190252, 2020
142020
Identification and measurement of gaps within sugarcane rows for site-specific management: Comparing different sensor-based approaches
LF Maldaner, JP Molin, M Martello, TR Tavares, FLF Dias
Biosystems Engineering 209, 64-73, 2021
132021
An approach to sugarcane yield estimation using sensors in the harvester and zigbee technology
LF Maldaner, TF Canata, JP Molin
Sugar Tech 24 (3), 813-821, 2022
112022
Evaluation of minimum preparation sampling strategies for sugarcane quality prediction by vis-nir spectroscopy
LP Corrêdo, LF Maldaner, HC Bazame, JP Molin
Sensors 21 (6), 2195, 2021
112021
Identifying and filtering out outliers in spatial datasets
LF Maldaner, LP Corrêdo, TR Tavares, LG Mendez, C Duarte, JP Molin
Proceedings of the 14th International Conference on Precision Agriculture …, 2018
92018
Use of Active Sensors in Coffee Cultivation for Monitoring Crop Yield
M Martello, JP Molin, HC Bazame, TR Tavares, LF Maldaner
Agronomy 12 (9), 2118, 2022
82022
3d data processing to characterize the spatial variability of sugarcane fields
TF Canata, M Martello, LF Maldaner, J de Souza Moreira, JP Molin
Sugar Tech 24 (2), 419-429, 2022
62022
Mapas de produtividade
LF Maldaner, MCF Wei, JP Molin
Boletim Técnico 4, 2019
62019
Processing yield data from two or more combines
LF Maldaner, JP Molin, TF Canata
Proceedings of the 13th international conference on precision agriculture, 2016
62016
SpatialTemporal Analysis to Investigate the Influence of in-Row Plant Spacing on the Sugarcane Yield
LF Maldaner, JP Molin, ER Otavio da Silva
Sugar Tech 26 (1), 194-206, 2024
22024
系统目前无法执行此操作,请稍后再试。
文章 1–20