Non-negative matrix factorization with sparseness constraints. PO Hoyer Journal of machine learning research 5 (9), 2004 | 3691 | 2004 |
A linear non-Gaussian acyclic model for causal discovery. S Shimizu, PO Hoyer, A Hyvärinen, A Kerminen, M Jordan Journal of Machine Learning Research 7 (10), 2006 | 1825 | 2006 |
Nonlinear causal discovery with additive noise models P Hoyer, D Janzing, JM Mooij, J Peters, B Schölkopf Advances in neural information processing systems 21, 2008 | 1160 | 2008 |
Non-negative sparse coding PO Hoyer Proceedings of the 12th IEEE workshop on neural networks for signal …, 2002 | 1160 | 2002 |
Natural image statistics: A probabilistic approach to early computational vision. A Hyvärinen, J Hurri, PO Hoyer Springer Science & Business Media, 2009 | 908 | 2009 |
Emergence of phase-and shift-invariant features by decomposition of natural images into independent feature subspaces A Hyvärinen, P Hoyer Neural computation 12 (7), 1705-1720, 2000 | 754 | 2000 |
Topographic independent component analysis A Hyvärinen, PO Hoyer, M Inki Neural computation 13 (7), 1527-1558, 2001 | 636 | 2001 |
Sparse code shrinkage: Denoising by nonlinear maximum likelihood estimation A Hyvärinen, P Hoyer, E Oja Advances in Neural Information Processing Systems 11, 1998 | 590 | 1998 |
DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model S Shimizu, T Inazumi, Y Sogawa, A Hyvarinen, Y Kawahara, T Washio, ... Journal of Machine Learning Research-JMLR 12 (Apr), 1225-1248, 2011 | 585 | 2011 |
Estimation of a structural vector autoregression model using non-gaussianity. A Hyvärinen, K Zhang, S Shimizu, PO Hoyer Journal of Machine Learning Research 11 (5), 2010 | 411 | 2010 |
Independent component analysis applied to feature extraction from colour and stereo images PO Hoyer, A Hyvärinen Network: computation in neural systems 11 (3), 191-210, 2000 | 389 | 2000 |
A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images A Hyvärinen, PO Hoyer Vision research 41 (18), 2413-2423, 2001 | 353 | 2001 |
Estimation of causal effects using linear non-Gaussian causal models with hidden variables PO Hoyer, S Shimizu, AJ Kerminen, M Palviainen International Journal of Approximate Reasoning 49 (2), 362-378, 2008 | 241 | 2008 |
Interpreting neural response variability as Monte Carlo sampling of the posterior P Hoyer, A Hyvärinen Advances in neural information processing systems 15, 2002 | 234 | 2002 |
Causal inference by independent component analysis: Theory and applications A Moneta, D Entner, PO Hoyer, A Coad Oxford Bulletin of Economics and Statistics 75 (5), 705-730, 2013 | 221 | 2013 |
Discovering cyclic causal models by independent components analysis G Lacerda, PL Spirtes, J Ramsey, PO Hoyer arXiv preprint arXiv:1206.3273, 2012 | 208 | 2012 |
A multi-layer sparse coding network learns contour coding from natural images PO Hoyer, A Hyvärinen Vision research 42 (12), 1593-1605, 2002 | 207 | 2002 |
Image denoising by sparse code shrinkage S Haykin, B Kosko Wiley-IEEE Press, 2001 | 188* | 2001 |
Modeling receptive fields with non-negative sparse coding PO Hoyer Neurocomputing 52, 547-552, 2003 | 166 | 2003 |
On causal discovery from time series data using FCI D Entner, PO Hoyer Probabilistic graphical models 16, 2010 | 151 | 2010 |