Stability in affine optimal control problems constrained by semilinear elliptic partial differential equations AD Corella, N Jork, V Veliov ESAIM Control Optimisation and Calculus of Variations, 2022 | 16 | 2022 |
New assumptions for stability analysis in elliptic optimal control problems E Casas Rentería, A Domínguez Corella, N Jork Society for Industrial and Applied Mathematics, 2023 | 10 | 2023 |
On the solution stability of parabolic optimal control problems AD Corella, N Jork, VM Veliov Computational Optimization and Applications 86 (3), 1035-1079, 2023 | 9 | 2023 |
Strong bi-metric regularity in affine optimal control problems A Domínguez Corella, M Quincampoix, V Veliov Pure and Applied Functional Analysis 6, 1119–1137, 2020 | 8* | 2020 |
The maximum principle for discrete-time control systems and applications to dynamic games A Domínguez Corella, O Hernández-Lerma Journal of Mathematical Analysis and Applications 475 (1), 253-277, 2019 | 8 | 2019 |
Hölder regularity in bang-bang type affine optimal control problems A Domínguez Corella, VM Veliov International Conference on Large-Scale Scientific Computing, 306-313, 2021 | 7 | 2021 |
On the accuracy of the model predictive control method G Angelov, AD Corella, VM Veliov SIAM Journal on Control and Optimization 60 (4), 2469-2487, 2022 | 6 | 2022 |
Stability and genericity of bang-bang controls in affine problems AD Corella, G Wachsmuth SIAM Journal on Control and Optimization 62 (3), 1669-1689, 2024 | 2 | 2024 |
Stability analysis of the Navier-Stokes velocity tracking problem with bang-bang controls A Domínguez Corella, N Jork, Š Nečasová, JSH Simon Journal of Optimization Theory and Applications, 2024 | 2 | 2024 |
Solution stability of parabolic optimal control problems with fixed state-distribution of the controls A Domínguez Corella, N Jork, VM Veliov Serdica Mathematical Journal, 2022 | 1* | 2022 |
Growth of nonconvex functionals at strict local minimizers A Domínguez Corella, TM Lê arXiv e-prints, arXiv: 2409.01833, 2024 | | 2024 |
Mini-batch descent in semiflows A Domínguez Corella, M Hernández arXiv preprint arXiv:2407.07556, 2024 | | 2024 |
A class of non-cylindrical domains for parabolic equations. A Domínguez Corella, J Rivera-Noriega Lecturas matemáticas 38 (2), 49-63, 2017 | | 2017 |