Statistical indistinguishability of learning algorithms A Kalavasis, A Karbasi, S Moran, G Velegkas International Conference on Machine Learning 40, 2023 | 19 | 2023 |
Efficient algorithms for learning from coarse labels D Fotakis, A Kalavasis, V Kontonis, C Tzamos Conference on Learning Theory, 2060-2079, 2021 | 18 | 2021 |
Efficient parameter estimation of truncated boolean product distributions D Fotakis, A Kalavasis, C Tzamos Conference on learning theory, 1586-1600, 2020 | 18 | 2020 |
Replicable bandits H Esfandiari, A Kalavasis, A Karbasi, A Krause, V Mirrokni, G Velegkas arXiv preprint arXiv:2210.01898, 2022 | 17 | 2022 |
Optimal Learners for Realizable Regression: PAC Learning and Online Learning I Attias, S Hanneke, A Kalavasis, A Karbasi, G Velegkas Advances in Neural Information Processing Systems 36, 2023 | 11 | 2023 |
Differentially private regression with unbounded covariates J Milionis, A Kalavasis, D Fotakis, S Ioannidis International Conference on Artificial Intelligence and Statistics, 3242-3273, 2022 | 11 | 2022 |
Multiclass Learnability Beyond the PAC Framework: Universal Rates and Partial Concept Classes A Kalavasis, G Velegkas, A Karbasi Advances in Neural Information Processing Systems 35, 2022 | 9 | 2022 |
Aggregating incomplete and noisy rankings D Fotakis, A Kalavasis, K Stavropoulos International conference on artificial intelligence and statistics, 2278-2286, 2021 | 8 | 2021 |
Label ranking through nonparametric regression D Fotakis, A Kalavasis, E Psaroudaki International Conference on Machine Learning, 6622-6659, 2022 | 7 | 2022 |
Linear label ranking with bounded noise D Fotakis, A Kalavasis, V Kontonis, C Tzamos Advances in Neural Information Processing Systems 35, 15642-15656, 2022 | 4 | 2022 |
Perfect Sampling from Pairwise Comparisons D Fotakis, A Kalavasis, C Tzamos Advances in Neural Information Processing Systems 35, 2022 | 4 | 2022 |
Replicable learning of large-margin halfspaces A Kalavasis, A Karbasi, KG Larsen, G Velegkas, F Zhou arXiv preprint arXiv:2402.13857, 2024 | 3 | 2024 |
Optimizing Solution-Samplers for Combinatorial Problems: The Landscape of Policy-Gradient Methods C Caramanis, D Fotakis, A Kalavasis, V Kontonis, C Tzamos Advances in Neural Information Processing Systems 36, 2023 | 3 | 2023 |
Transfer learning beyond bounded density ratios A Kalavasis, I Zadik, M Zampetakis arXiv preprint arXiv:2403.11963, 2024 | 2 | 2024 |
Learning and covering sums of independent random variables with unbounded support A Kalavasis, K Stavropoulos, E Zampetakis Advances in Neural Information Processing Systems 35, 25185-25197, 2022 | 2 | 2022 |
On Sampling from Ising Models with Spectral Constraints A Galanis, A Kalavasis, AV Kandiros arXiv preprint arXiv:2407.07645, 2024 | 1 | 2024 |
Injecting Undetectable Backdoors in Deep Learning and Language Models A Kalavasis, A Karbasi, A Oikonomou, K Sotiraki, G Velegkas, ... arXiv preprint arXiv:2406.05660, 2024 | 1 | 2024 |
On the Computational Landscape of Replicable Learning A Kalavasis, A Karbasi, G Velegkas, F Zhou arXiv preprint arXiv:2405.15599, 2024 | 1 | 2024 |
Learning Hard-Constrained Models with One Sample A Galanis, A Kalavasis, AV Kandiros Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms …, 2024 | 1 | 2024 |
On the Complexity of Computing Sparse Equilibria and Lower Bounds for No-Regret Learning in Games I Anagnostides, A Kalavasis, T Sandholm, M Zampetakis arXiv preprint arXiv:2311.14869, 2023 | 1 | 2023 |