stochastische Differentialgleichungen A Prohl, AK Majee | 384 | 1973 |
Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows X Feng, A Prohl Numerische Mathematik 94, 33-65, 2003 | 374 | 2003 |
Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations A Prohl Teubner, 1997 | 278 | 1997 |
Error analysis of a mixed finite element method for the Cahn-Hilliard equation X Feng, A Prohl Numerische Mathematik 99, 47-84, 2004 | 213 | 2004 |
Recent developments in the modeling, analysis, and numerics of ferromagnetism M Kruzik, A Prohl SIAM review 48 (3), 439-483, 2006 | 200 | 2006 |
Computational micromagnetism A Prohl BG Teubner, 2001 | 171 | 2001 |
Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system A Prohl ESAIM: Mathematical Modelling and Numerical Analysis 42 (6), 1065-1087, 2008 | 135 | 2008 |
Convergence of an implicit finite element method for the Landau–Lifshitz–Gilbert equation S Bartels, A Prohl SIAM journal on numerical analysis 44 (4), 1405-1419, 2006 | 134 | 2006 |
Finite element approximations of the Ericksen–Leslie model for nematic liquid crystal flow R Becker, X Feng, A Prohl SIAM Journal on Numerical Analysis 46 (4), 1704-1731, 2008 | 104 | 2008 |
Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits X Feng, A Prohl Mathematics of computation 73 (246), 541-567, 2004 | 99 | 2004 |
Analysis of total variation flow and its finite element approximations X Feng, A Prohl ESAIM: Mathematical Modelling and Numerical Analysis 37 (3), 533-556, 2003 | 94 | 2003 |
Finite-element-based discretizations of the incompressible Navier–Stokes equations with multiplicative random forcing Z Brzeźniak, E Carelli, A Prohl IMA Journal of Numerical Analysis 33 (3), 771-824, 2013 | 89 | 2013 |
Rates of convergence for discretizations of the stochastic incompressible Navier--Stokes equations E Carelli, A Prohl SIAM Journal on Numerical Analysis 50 (5), 2467-2496, 2012 | 79 | 2012 |
Convergent discretizations for the Nernst–Planck–Poisson system A Prohl, M Schmuck Numerische Mathematik 111, 591-630, 2009 | 78 | 2009 |
Numerical analysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation S Bartels, J Ko, A Prohl Mathematics of Computation 77 (262), 773-788, 2008 | 75 | 2008 |
Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem A Prohl, X Feng Interfaces and Free Boundaries 7 (1), 1-28, 2005 | 72 | 2005 |
Constraint preserving implicit finite element discretization of harmonic map flow into spheres S Bartels, A Prohl Mathematics of computation 76 (260), 1847-1859, 2007 | 63 | 2007 |
A convergent finite-element-based discretization of the stochastic Landau–Lifshitz–Gilbert equation L Baňas, Z Brzeźniak, M Neklyudov, A Prohl IMA Journal of Numerical Analysis 34 (2), 502-549, 2014 | 57 | 2014 |
Numerical analysis of relaxed micromagnetics by penalised finite elements C Carstensen, A Prohl Numerische Mathematik 90, 65-99, 2001 | 57 | 2001 |
A convergent implicit finite element discretization of the Maxwell–Landau–Lifshitz–Gilbert equation L Baňas, S Bartels, A Prohl SIAM journal on numerical analysis 46 (3), 1399-1422, 2008 | 55 | 2008 |