Uncertainty quantification using Bayesian neural networks in classification: Application to biomedical image segmentation Y Kwon, JH Won, BJ Kim, MC Paik Computational Statistics & Data Analysis 142, 106816, 2020 | 449* | 2020 |
Mind the gap: Understanding the modality gap in multi-modal contrastive representation learning W Liang, Y Zhang, Y Kwon, S Yeung, J Zou Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS 2022), 2022 | 219 | 2022 |
ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI S Winzeck, A Hakim, R McKinley, JA Pinto, V Alves, C Silva, M Pisov, ... Frontiers in neurology 9, 679, 2018 | 167 | 2018 |
A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification S Ryu, Y Kwon, WY Kim Chemical science 10 (36), 8438-8446, 2019 | 145* | 2019 |
Beta shapley: a unified and noise-reduced data valuation framework for machine learning Y Kwon, J Zou International Conference on Artificial Intelligence and Statistics, 8780-8802, 2022 | 96 | 2022 |
Efficient computation and analysis of distributional Shapley values Y Kwon, MA Rivas, J Zou International Conference on Artificial Intelligence and Statistics, 793-801, 2021 | 61 | 2021 |
Ensemble of deep convolutional neural networks for prognosis of ischemic stroke Y Choi, Y Kwon, H Lee, BJ Kim, MC Paik, JH Won International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke …, 2017 | 60 | 2017 |
Comprehensive Study on Molecular Supervised Learning with Graph Neural Networks D Hwang, S Yang, Y Kwon, KH Lee, G Lee, H Jo, S Yoon, S Ryu Journal of Chemical Information and Modeling, 2020 | 27 | 2020 |
WeightedSHAP: analyzing and improving Shapley based feature attributions Y Kwon, J Zou Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS 2022), 2022 | 25 | 2022 |
Datainf: Efficiently estimating data influence in lora-tuned llms and diffusion models Y Kwon, E Wu, K Wu, J Zou arXiv preprint arXiv:2310.00902, 2023 | 19 | 2023 |
Opendataval: a unified benchmark for data valuation K Jiang, W Liang, JY Zou, Y Kwon Advances in Neural Information Processing Systems 36, 2023 | 17 | 2023 |
Calibrated propensity score method for survey nonresponse in cluster sampling JK Kim, Y Kwon, MC Paik Biometrika 103 (2), 461-473, 2016 | 17 | 2016 |
Data-OOB: Out-of-bag Estimate as a Simple and Efficient Data Value Y Kwon, J Zou International Conference on Machine Learning (ICML), 2023 | 16 | 2023 |
Competing AI: How does competition feedback affect machine learning A Ginart, E Zhang, Y Kwon, J Zou International Conference on Artificial Intelligence and Statistics 130, 1693 …, 2021 | 15 | 2021 |
Valid oversampling schemes to handle imbalance Y Kim, Y Kwon, MC Paik Pattern Recognition Letters 125, 661-667, 2019 | 15 | 2019 |
Principled Learning Method for Wasserstein Distributionally Robust Optimization with Local Perturbations Y Kwon, W Kim, JH Won, MC Paik International Conference on Machine Learning 119, 5567-5576, 2020 | 13 | 2020 |
Lipschitz continuous autoencoders in application to anomaly detection Y Kim, Y Kwon, H Chang, MC Paik International Conference on Artificial Intelligence and Statistics, 2507-2517, 2020 | 10 | 2020 |
Principled analytic classifier for positive-unlabeled learning via weighted integral probability metric Y Kwon, W Kim, M Sugiyama, MC Paik Machine Learning, 1-20, 2019 | 10 | 2019 |
Deconvoluting complex correlates of COVID-19 severity with a multi-omic pandemic tracking strategy VN Parikh, AG Ioannidis, D Jimenez-Morales, JE Gorzynski, HN De Jong, ... Nature communications 13 (1), 5107, 2022 | 8* | 2022 |
Generalized estimating equations with stabilized working correlation structure Y Kwon, YG Choi, T Park, A Ziegler, MC Paik Computational Statistics & Data Analysis 106, 1-11, 2017 | 8 | 2017 |