Deep learning for handling kernel/model uncertainty in image deconvolution Y Nan, H Ji Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 57 | 2020 |
Variational-EM-based deep learning for noise-blind image deblurring Y Nan, Y Quan, H Ji Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 56 | 2020 |
Nonblind image deblurring via deep learning in complex field Y Quan, P Lin, Y Xu, Y Nan, H Ji IEEE Transactions on Neural Networks and Learning Systems 33 (10), 5387-5400, 2021 | 29 | 2021 |
Deep learning with adaptive hyper-parameters for low-dose CT image reconstruction Q Ding, Y Nan, H Gao, H Ji IEEE Transactions on Computational Imaging 7, 648-660, 2021 | 24 | 2021 |
Un-supervised learning for blind image deconvolution via monte-carlo sampling J Li, Y Nan, H Ji Inverse Problems 38 (3), 035012, 2022 | 15 | 2022 |
Self-supervised blind motion deblurring with deep expectation maximization J Li, W Wang, Y Nan, H Ji Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023 | 10 | 2023 |
INVERSE PROBLEMS NEWSLETTER J Li, Y Nan, H Ji, P Massa, F Benvenuto Inverse Problems 15, 343-344, 1999 | | 1999 |