关注
Maryam Aliakbarpour
标题
引用次数
引用次数
年份
I've seen" enough" incrementally improving visualizations to support rapid decision making
S Rahman, M Aliakbarpour, HK Kong, E Blais, K Karahalios, ...
Proceedings of the VLDB Endowment 10 (11), 1262-1273, 2017
822017
Sublinear-Time Algorithms for Counting Star Subgraphs via Edge Sampling
M Aliakbarpour, AS Biswas, T Gouleakis, J Peebles, R Rubinfeld, ...
Algorithmica 80 (2), 668-697, 2018
60*2018
Differentially Private Identity and Equivalence Testing of Discrete Distributions
M Aliakbarpour, I Diakonikolas, R Rubinfeld
International Conference on Machine Learning, 169-178, 2018
52*2018
Local Differential Privacy Is Equivalent to Contraction of -Divergence
S Asoodeh, M Aliakbarpour, FP Calmon
arXiv preprint arXiv:2102.01258, 2021
29*2021
Private testing of distributions via sample permutations
M Aliakbarpour, I Diakonikolas, D Kane, R Rubinfeld
Advances in Neural Information Processing Systems 32, 2019
232019
Learning and testing junta distributions
M Aliakbarpour, E Blais, R Rubinfeld
Conference on Learning Theory, 19-46, 2016
172016
Estimation of entropy in constant space with improved sample complexity
M Aliakbarpour, A McGregor, J Nelson, E Waingarten
Advances in Neural Information Processing Systems 35, 32474-32486, 2022
82022
Towards Testing Monotonicity of Distributions Over General Posets
M Aliakbarpour, T Gouleakis, J Peebles, R Rubinfeld, A Yodpinyanee
Conference on Learning Theory, 34-82, 2019
72019
Rapid approximate aggregation with distribution-sensitive interval guarantees
S Macke, M Aliakbarpour, I Diakonikolas, A Parameswaran, R Rubinfeld
2021 IEEE 37th International Conference on Data Engineering (ICDE), 1703-1714, 2021
42021
Testing properties of multiple distributions with few samples
M Aliakbarpour, S Silwal
arXiv preprint arXiv:1911.07324, 2019
32019
Testing Mixtures of Discrete Distributions
M Aliakbarpour, R Kumar, R Rubinfeld
Conference on Learning Theory, 83-114, 2019
32019
Hypothesis selection with memory constraints
M Aliakbarpour, M Bun, A Smith
Advances in Neural Information Processing Systems 36, 50453-50481, 2023
22023
Differentially Private Medians and Interior Points for Non-Pathological Data
M Aliakbarpour, R Silver, T Steinke, J Ullman
arXiv preprint arXiv:2305.13440, 2023
22023
Metalearning with very few samples per task
M Aliakbarpour, K Bairaktari, G Brown, A Smith, N Srebro, J Ullman
The Thirty Seventh Annual Conference on Learning Theory, 46-93, 2024
12024
Testing determinantal point processes
K Gatmiry, M Aliakbarpour, S Jegelka
Advances in Neural Information Processing Systems 33, 12779-12791, 2020
12020
LIPIcs, Volume 287, ITCS 2024, Complete Volume}}
V Guruswami, S Aaronson, H Buhrman, W Kretschmer, S Aaronson, ...
15th Innovations in Theoretical Computer Science Conference (ITCS 2024) 287, 9, 2024
2024
Testing Tail Weight of a Distribution Via Hazard Rate
M Aliakbarpour, AS Biswas, K Ravichandran, R Rubinfeld
International Conference on Algorithmic Learning Theory, 34-81, 2023
2023
Distribution testing: classical and new paradigms
M Aliakbarpour
Massachusetts Institute of Technology, 2020
2020
Learning and testing junta distributions over hypercubes
M Aliakbarpour
Massachusetts Institute of Technology, 2015
2015
Join of two graphs admits a nowhere-zero 3-flow
S Akbari, M Aliakbarpour, N Ghanbari, E Nategh, H Shahmohamad
Czechoslovak Mathematical Journal 64, 433-446, 2014
2014
系统目前无法执行此操作,请稍后再试。
文章 1–20