Language models are few-shot learners TB Brown arXiv preprint arXiv:2005.14165, 2020 | 32436 | 2020 |
Learning transferable visual models from natural language supervision A Radford, JW Kim, C Hallacy, A Ramesh, G Goh, S Agarwal, G Sastry, ... International conference on machine learning, 8748-8763, 2021 | 21950 | 2021 |
Gpt-4 technical report J Achiam, S Adler, S Agarwal, L Ahmad, I Akkaya, FL Aleman, D Almeida, ... arXiv preprint arXiv:2303.08774, 2023 | 3852 | 2023 |
Evaluating large language models trained on code M Chen, J Tworek, H Jun, Q Yuan, HPDO Pinto, J Kaplan, H Edwards, ... arXiv preprint arXiv:2107.03374, 2021 | 2879 | 2021 |
AI and Compute D Amodei, D Hernandez, G Sastry, J Clark, G Brockman, I Sutskever | 464 | 2018 |
Toward trustworthy AI development: mechanisms for supporting verifiable claims M Brundage, S Avin, J Wang, H Belfield, G Krueger, G Hadfield, H Khlaaf, ... arXiv preprint arXiv:2004.07213, 2020 | 380 | 2020 |
Text and code embeddings by contrastive pre-training A Neelakantan, T Xu, R Puri, A Radford, JM Han, J Tworek, Q Yuan, ... arXiv preprint arXiv:2201.10005, 2022 | 355 | 2022 |
Trial without error: Towards safe reinforcement learning via human intervention W Saunders, G Sastry, A Stuhlmueller, O Evans arXiv preprint arXiv:1707.05173, 2017 | 315 | 2017 |
Generative language models and automated influence operations: Emerging threats and potential mitigations JA Goldstein, G Sastry, M Musser, R DiResta, M Gentzel, K Sedova arXiv preprint arXiv:2301.04246, 2023 | 235 | 2023 |
Language Models are Few-Shot Learners. 2020. doi: 10.48550 TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ... arxiv, 5-7, 2005 | 198 | 2005 |
Learning transferable visual models from natural language supervision. arXiv A Radford, JW Kim, C Hallacy, A Ramesh, G Goh, S Agarwal, G Sastry, ... arXiv preprint arXiv:2103.00020, 2021 | 112 | 2021 |
& Amodei, D.(2020) TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ... Language models are few-shot learners, 2005 | 101 | 2005 |
Language models are few-shot learners (arXiv: 2005.14165). arXiv TB Brown, B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, ... | 98 | 2005 |
Language models are few-shot learners B Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, ... arXiv preprint arXiv:2005.14165 1, 2020 | 82 | 2020 |
AI and compute, 2018 D Amodei, D Hernandez, G Sastry, J Clark, G Brockman, I Sutskever URL https://openai. com/blog/ai-and-compute 4, 2018 | 73 | 2018 |
International conference on machine learning A Radford, JW Kim, C Hallacy, A Ramesh, G Goh, S Agarwal, G Sastry, ... PMLR, 2021 | 50 | 2021 |
Evaluating large language models trained on code. arXiv 2021 M Chen, J Tworek, H Jun, Q Yuan, HPO Pinto, J Kaplan, H Edwards, ... arXiv preprint arXiv:2107.03374 10, 2021 | 44 | 2021 |
Computing Power and the Governance of Artificial Intelligence G Sastry, L Heim, H Belfield, M Anderljung, M Brundage, J Hazell, ... arXiv preprint arXiv:2402.08797, 2024 | 14 | 2024 |
Generative Language Models and Automated Influence Operations: Emerging Threats and Potential Mitigations By admin No Comments JA Goldstein, G Sastry, M Musser, R DiResta, M Gentzel, K Sedova | 6 | |
Considerations for evaluating large language models for cybersecurity tasks J Gennari, S Lau, S Perl, J Parish, G Sastry Carnegie Mellon University, 2024 | 5 | 2024 |