Inference via low-dimensional couplings A Spantini, D Bigoni, Y Marzouk Journal of Machine Learning Research 19 (66), 1-71, 2018 | 134 | 2018 |
Spectral tensor-train decomposition D Bigoni, AP Engsig-Karup, YM Marzouk SIAM Journal on Scientific Computing 38 (4), A2405-A2439, 2016 | 121 | 2016 |
A stabilised nodal spectral element method for fully nonlinear water waves AP Engsig-Karup, C Eskilsson, D Bigoni Journal of Computational Physics 318, 1-21, 2016 | 75 | 2016 |
Greedy inference with structure-exploiting lazy maps M Brennan, D Bigoni, O Zahm, A Spantini, Y Marzouk Advances in Neural Information Processing Systems 33, 8330-8342, 2020 | 43 | 2020 |
On the numerical and computational aspects of non-smoothnesses that occur in railway vehicle dynamics H True, AP Engsig-Karup, D Bigoni Mathematics and Computers in Simulation 95, 78-97, 2014 | 37 | 2014 |
Sensitivity analysis of the critical speed in railway vehicle dynamics D Bigoni, H True, AP Engsig-Karup Vehicle System Dynamics 52 (sup1), 272-286, 2014 | 33 | 2014 |
Nonlinear dimension reduction for surrogate modeling using gradient information D Bigoni, Y Marzouk, C Prieur, O Zahm Information and Inference: A Journal of the IMA 11 (4), 1597-1639, 2022 | 24 | 2022 |
Uncertainty quantification with applications to engineering problems D Bigoni Technical University of Denmark, 2015 | 24 | 2015 |
Efficient uncertainty quantification of a fully nonlinear and dispersive water wave model with random inputs D Bigoni, AP Engsig-Karup, C Eskilsson Journal of Engineering Mathematics 101, 87-113, 2016 | 21 | 2016 |
Greedy inference with layers of lazy maps D Bigoni, O Zahm, A Spantini, Y Marzouk arXiv preprint arXiv:1906.00031, 2019 | 15 | 2019 |
Data-driven forward discretizations for Bayesian inversion D Bigoni, Y Chen, NG Trillos, Y Marzouk, D Sanz-Alonso Inverse Problems 36 (10), 105008, 2020 | 13 | 2020 |
Adaptive construction of measure transports for Bayesian inference D Bigoni, A Spantini, Y Marzouk NIPS workshop on Approximate Inference, 2016 | 8 | 2016 |
Comparison of classical and modern uncertainty qualification methods for the calculation of critical speeds in railway vehicle dynamics D Bigoni, AP Engsig-Karup, H True 13th Mini Conference on Vehicle System dynamics, Identification and Anomalities, 2012 | 7 | 2012 |
Unstructured spectral element model for dispersive and nonlinear wave propagation AP Engsig-Karup, C Eskilsson, D Bigoni ISOPE International Ocean and Polar Engineering Conference, ISOPE-I-16-455, 2016 | 6 | 2016 |
On the computation of monotone transports D Bigoni, A Spantini, Y Marzouk preparation, 2019 | 5 | 2019 |
TransportMaps RM Baptista, D Bigoni, R Morrison, A Spantini MIT Uncertainty Quantification Group 2018, 123-124, 2015 | 5 | 2015 |
Curving Dynamics in High Speed Trains D Bigoni Technical University of Denmark, DTU Informatics, Kgs. Lyngby, Denmark, 2011 | 5 | 2011 |
Global Sensitivity Analysis of Railway Vehicle Dynamics on Curved Tracks D Bigoni, AP Engisg-Karup, H True Engineering Systems Design and Analysis 45844, V002T07A023, 2014 | 4 | 2014 |
Modern uncertainty quantification methods in railroad vehicle dynamics D Bigoni, AP Engsig-Karup, H True Rail Transportation Division Conference 56116, V001T01A009, 2013 | 4 | 2013 |
Variational inference via decomposable transports: algorithms for Bayesian filtering and smoothing A Spantini, D Bigoni, YM Marzouk Proceedings of the 30th Conference on Neural Information Processing Systems, 2016 | 3 | 2016 |