关注
Hazar Harmouch
标题
引用次数
引用次数
年份
Cardinality estimation: An experimental survey
H Harmouch, F Naumann
Proceedings of the VLDB Endowment 11 (4), 499-512, 2017
1082017
The effects of data quality on machine learning performance
L Budach, M Feuerpfeil, N Ihde, A Nathansen, N Noack, H Patzlaff, ...
arXiv preprint arXiv:2207.14529, 2022
962022
Discovery of genuine functional dependencies from relational data with missing values
L Berti-Équille, H Harmouch, F Naumann, N Novelli, ...
Proceedings of the VLDB Endowment 11 (8), 880-892, 2018
602018
Evaluating four of the most popular open source and free data mining tools
A Al-Khoder, H Harmouch
International Journal of Academic Scientific Research 3 (10), 13-23, 2015
282015
Inclusion dependency discovery: An experimental evaluation of thirteen algorithms
F Dürsch, A Stebner, F Windheuser, M Fischer, T Friedrich, N Strelow, ...
Proceedings of the 28th ACM International Conference on Information and …, 2019
192019
Data Anamnesis: Admitting Raw Data into an Organization.
S Kruse, T Papenbrock, H Harmouch, F Naumann
IEEE Data Eng. Bull. 39 (2), 8-20, 2016
192016
The effects of data quality on machine learning performance. arXiv 2022
L Budach, M Feuerpfeil, N Ihde, A Nathansen, N Noack, H Patzlaff, ...
arXiv preprint arXiv:2207.14529, 0
9
The effects of data quality on ml-model performance
L Budach, M Feuerpfeil, N Ihde, A Nathansen, NS Noack, H Patzlaff, ...
CoRR abs/2207.14529, 2022
52022
Relational header discovery using similarity search in a table corpus
H Harmouch, T Papenbrock, F Naumann
2021 IEEE 37th International Conference on Data Engineering (ICDE), 444-455, 2021
52021
The Effects of Data Quality on Machine Learning Performance. 2022
L Budach, M Feuerpfeil, N Ihde, A Nathansen, N Noack, H Patzlaff, ...
arXiv preprint arXiv:2207.14529, 0
5
Data Quality Assessment: Challenges and Opportunities
S Mohammed, H Harmouch, F Naumann, D Srivastava
arXiv preprint arXiv:2403.00526, 2024
32024
Single-column data profiling
H Harmouch
Universität Potsdam, 2020
32020
Discovery of genuine functional dependencies from relational data with missing values [abstract for inforsid 2019]
L Berti-Equille, H Harmouch, F Naumann, N Novelli, T Saravanan
INFORSID 2019, 2019
12019
Joint Proceedings of Workshops at the 49th International Conference on Very Large Data Bases (VLDB 2023), Vancouver, Canada, August 28-September 1, 2023.
R Bordawekar, C Cappiello, V Efthymiou, L Ehrlinger, V Gadepally, ...
CEUR-WS. org, 2023
2023
How Data Quality Determines AI Fairness: The Case of Automated Interviewing.
LT Brandner, P Mahlow, A Wilken, A Wölke, H Harmouch, SD Hirsbrunner
EWAF, 2023
2023
Master Seminar on Question Answering Systems
F Naumann, D Stephan, T Bleifuß, D Bhadauria, L Bornemann, ...
Distributed Duplicate Detection
F Naumann, D Stephan, T Bleifuß, L Ehrlinger, M Hameed, S Krause, ...
CohEEL-Coherent and Efficient Named Entity Linking through Random Walks
F Naumann, D Stephan, T Bleifuß, D Bhadauria, L Ehrlinger, M Hameed, ...
Large Scale Duplicate Detection
F Naumann, D Stephan, T Bleifuß, D Bhadauria, L Bornemann, ...
系统目前无法执行此操作,请稍后再试。
文章 1–19