Stochastic algorithms for self-consistent calculations of electronic structures T Ko, X Li Mathematics of Computation 92 (342), 1693-1728, 2023 | 6 | 2023 |
Implementation of the Density-functional Theory on Quantum Computers with Linear Scaling with respect to the Number of Atoms T Ko, X Li, C Wang arXiv preprint arXiv:2307.07067, 2023 | 5 | 2023 |
A Local Convergence Theory for the Stochastic Gradient Descent Method in Non-Convex Optimization With Non-isolated Local Minima T Ko, X Li Journal of Machine Learning 2 (Issue 2), 138-160, 2023 | 4 | 2023 |
Using machine learning to go beyond potential energy surface benchmarking for chemical reactivity X Guan, JP Heindel, T Ko, C Yang, T Head-Gordon Nature Computational Science 3 (11), 965-974, 2023 | 3 | 2023 |
Using diffusion maps to analyze reaction dynamics for a hydrogen combustion benchmark dataset T Ko, JP Heindel, X Guan, T Head-Gordon, DB Williams-Young, C Yang Journal of Chemical Theory and Computation 19 (17), 5872-5885, 2023 | 3 | 2023 |
Random coordinate descent: a simple alternative for optimizing parameterized quantum circuits Z Ding, T Ko, J Yao, L Lin, X Li Physical Review Research 6 (3), 033029, 2024 | 2 | 2024 |
Quantum random power method for ground state computation T Ko, H Park, S Choi arXiv preprint arXiv:2408.08556, 2024 | | 2024 |
Beyond potential energy surface benchmarking: a complete application of machine learning to chemical reactivity X Guan, J Heindel, T Ko, C Yang, T Head-Gordon arXiv preprint arXiv:2306.08273, 2023 | | 2023 |
Stochastic Algorithms for Some Problems in Chemistry and Machine Learning T Ko The Pennsylvania State University, 2023 | | 2023 |