关注
Natasa Tagasovska
Natasa Tagasovska
其他姓名Natasha Tagasovska, Nataša Tagasovska
Prescient Design | Genentech | Roche
在 roche.com 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Single-model uncertainties for deep learning
N Tagasovska, D Lopez-Paz
Advances in Neural Information Processing Systems, 6417-6428, 2019
2882019
Deep Smoothing of the Implied Volatility Surface
D Ackerer, N Tagasovska, T Vatter
Proceedings of 34th Conference on Neural Information Processing Systems …, 2020
442020
Distinguishing Cause from Effect Using Quantiles: Bivariate Quantile Causal Discovery
N Tagasovska, V Chavez-Demoulin, T Vatter
Proceedings of the 37th International Conference on Machine Learning, ICML, 2020
38*2020
Copulas as High-Dimensional Generative Models: Vine Copula Autoencoders
N Tagasovska, D Ackerer, T Vatter
Advances in Neural Information Processing Systems, 6528-6540, 2019
382019
Generative Models for Simulating Mobility Trajectories
V Kulkarni, N Tagasovska, T Vatter, B Garbinato
Workshop on Modeling and Decision-Making in the Spatiotemporal Domain, 32nd …, 2018
342018
Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling
R Lopez*, N Tagasovska*, S Ra, K Cho, J Pritchard, A Regev
2nd Conference on Causal Learning and Reasoning (CLeaR), 2022
222022
Distributed clustering of categorical data using the information bottleneck framework
N Tagasovska, P Andritsos
Information Systems 72, 161-178, 2017
92017
Bimodal feature-based fusion for real-time emotion recognition in a mobile context
S Gievska, K Koroveshovski, N Tagasovska
2015 International Conference on Affective Computing and Intelligent …, 2015
92015
Vision Paper: Causal Inference for Interpretable and Robust Machine Learning in Mobility Analysis
Y Xin, N Tagasovska, F Perez-Cruz, M Raubal
ACM SIGSPATIAL 2022, 2022
82022
A Pareto-optimal compositional energy-based model for sampling and optimization of protein sequences
N Tagasovska, NC Frey, A Loukas, I Hötzel, J Lafrance-Vanasse, RL Kelly, ...
NeurIPS 2022 AI for Science workshop, 2022
72022
Efficiency comparison of DFT/IDFT algorithms by evaluating diverse hardware implementations, parallelization prospects and possible improvements
D Efnusheva, N Tagasovska, A Tentov, M Kalendar
Proc. Second International Conference on Applied Innovations in IT, Germany, 2014
52014
Retrospective Uncertainties for Deep Models using Vine Copulas
N Tagasovska, F Ozdemir, A Brando
Proceedings of the 26th International Conference on Artificial Intelligence …, 2023
22023
BOtied: Multi-objective Bayesian optimization with tied multivariate ranks
JW Park*, N Tagasovska*, M Maser, S Ra, K Cho
ICML 2024, 2024
12024
Performances of LEON3 IP Core in WiGig Environment on Receiving Side
N Tagasovska, P Grnarova, A Tentov, D Efnusheva
New Trends in Networking, Computing, E-learning, Systems Sciences, and …, 2015
12015
An Efficient 64-Point IFFT Hardware Module Design
D Efnusheva, A Tentov, N Tagasovska
New Trends in Networking, Computing, E-learning, Systems Sciences, and …, 2015
12015
Uncertainty modeling for fine-tuned implicit functions
A Susmelj, M Macuglia, N Tagasovska, R Sutter, S Caprara, JP Thiran, ...
arXiv preprint arXiv:2406.12082, 2024
2024
Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient
N Tagasovska, V Gligorijević, K Cho, A Loukas
arXiv preprint arXiv:2405.18075, 2024
2024
MoleCLUEs: Molecular Conformers Maximally In-Distribution for Predictive Models
M Maser, N Tagasovska, JH Lee, A Watkins
NeurIPS 2023 AI for Science Workshop, 2023
2023
Antibody DomainBed: Out-of-Distribution Generalization in Therapeutic Protein Design
N Tagasovska, JW Park, M Kirchmeyer, NC Frey, AM Watkins, AA Ismail, ...
2023
MoleCLUEs: Optimizing Molecular Conformers by Minimization of Differentiable Uncertainty
M Maser*, N Tagasovska*, JH Lee, A Watkins
arXiv preprint arXiv:2306.11681, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20