Single-model uncertainties for deep learning N Tagasovska, D Lopez-Paz Advances in Neural Information Processing Systems, 6417-6428, 2019 | 288 | 2019 |
Deep Smoothing of the Implied Volatility Surface D Ackerer, N Tagasovska, T Vatter Proceedings of 34th Conference on Neural Information Processing Systems …, 2020 | 44 | 2020 |
Distinguishing Cause from Effect Using Quantiles: Bivariate Quantile Causal Discovery N Tagasovska, V Chavez-Demoulin, T Vatter Proceedings of the 37th International Conference on Machine Learning, ICML, 2020 | 38* | 2020 |
Copulas as High-Dimensional Generative Models: Vine Copula Autoencoders N Tagasovska, D Ackerer, T Vatter Advances in Neural Information Processing Systems, 6528-6540, 2019 | 38 | 2019 |
Generative Models for Simulating Mobility Trajectories V Kulkarni, N Tagasovska, T Vatter, B Garbinato Workshop on Modeling and Decision-Making in the Spatiotemporal Domain, 32nd …, 2018 | 34 | 2018 |
Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling R Lopez*, N Tagasovska*, S Ra, K Cho, J Pritchard, A Regev 2nd Conference on Causal Learning and Reasoning (CLeaR), 2022 | 22 | 2022 |
Distributed clustering of categorical data using the information bottleneck framework N Tagasovska, P Andritsos Information Systems 72, 161-178, 2017 | 9 | 2017 |
Bimodal feature-based fusion for real-time emotion recognition in a mobile context S Gievska, K Koroveshovski, N Tagasovska 2015 International Conference on Affective Computing and Intelligent …, 2015 | 9 | 2015 |
Vision Paper: Causal Inference for Interpretable and Robust Machine Learning in Mobility Analysis Y Xin, N Tagasovska, F Perez-Cruz, M Raubal ACM SIGSPATIAL 2022, 2022 | 8 | 2022 |
A Pareto-optimal compositional energy-based model for sampling and optimization of protein sequences N Tagasovska, NC Frey, A Loukas, I Hötzel, J Lafrance-Vanasse, RL Kelly, ... NeurIPS 2022 AI for Science workshop, 2022 | 7 | 2022 |
Efficiency comparison of DFT/IDFT algorithms by evaluating diverse hardware implementations, parallelization prospects and possible improvements D Efnusheva, N Tagasovska, A Tentov, M Kalendar Proc. Second International Conference on Applied Innovations in IT, Germany, 2014 | 5 | 2014 |
Retrospective Uncertainties for Deep Models using Vine Copulas N Tagasovska, F Ozdemir, A Brando Proceedings of the 26th International Conference on Artificial Intelligence …, 2023 | 2 | 2023 |
BOtied: Multi-objective Bayesian optimization with tied multivariate ranks JW Park*, N Tagasovska*, M Maser, S Ra, K Cho ICML 2024, 2024 | 1 | 2024 |
Performances of LEON3 IP Core in WiGig Environment on Receiving Side N Tagasovska, P Grnarova, A Tentov, D Efnusheva New Trends in Networking, Computing, E-learning, Systems Sciences, and …, 2015 | 1 | 2015 |
An Efficient 64-Point IFFT Hardware Module Design D Efnusheva, A Tentov, N Tagasovska New Trends in Networking, Computing, E-learning, Systems Sciences, and …, 2015 | 1 | 2015 |
Uncertainty modeling for fine-tuned implicit functions A Susmelj, M Macuglia, N Tagasovska, R Sutter, S Caprara, JP Thiran, ... arXiv preprint arXiv:2406.12082, 2024 | | 2024 |
Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient N Tagasovska, V Gligorijević, K Cho, A Loukas arXiv preprint arXiv:2405.18075, 2024 | | 2024 |
MoleCLUEs: Molecular Conformers Maximally In-Distribution for Predictive Models M Maser, N Tagasovska, JH Lee, A Watkins NeurIPS 2023 AI for Science Workshop, 2023 | | 2023 |
Antibody DomainBed: Out-of-Distribution Generalization in Therapeutic Protein Design N Tagasovska, JW Park, M Kirchmeyer, NC Frey, AM Watkins, AA Ismail, ... | | 2023 |
MoleCLUEs: Optimizing Molecular Conformers by Minimization of Differentiable Uncertainty M Maser*, N Tagasovska*, JH Lee, A Watkins arXiv preprint arXiv:2306.11681, 2023 | | 2023 |