Scalable Global Optimization via Local Bayesian Optimization D Eriksson, M Pearce, J Gardner, RD Turner, M Poloczek Advances in Neural Information Processing Systems, 2019 | 473 | 2019 |
Bayesian optimization is superior to random search for machine learning hyperparameter tuning: Analysis of the black-box optimization challenge 2020 R Turner, D Eriksson, M McCourt, J Kiili, E Laaksonen, Z Xu, I Guyon NeurIPS 2020 Competition and Demonstration Track, 3-26, 2021 | 322 | 2021 |
High-dimensional Bayesian optimization with sparse axis-aligned subspaces D Eriksson, M Jankowiak Uncertainty in Artificial Intelligence, 493-503, 2021 | 117 | 2021 |
Scalable Constrained Bayesian Optimization D Eriksson, M Poloczek International Conference on Artificial Intelligence and Statistics, 730-738, 2021 | 110 | 2021 |
Multi-objective bayesian optimization over high-dimensional search spaces S Daulton, D Eriksson, M Balandat, E Bakshy Uncertainty in Artificial Intelligence, 507-517, 2022 | 101 | 2022 |
Scalable Log Determinants for Gaussian Process Kernel Learning K Dong, D Eriksson, H Nickisch, D Bindel, AG Wilson Advances in Neural Information Processing Systems, 2017 | 100 | 2017 |
Scaling Gaussian Process Regression with Derivatives D Eriksson, K Dong, EH Lee, D Bindel, AG Wilson Advances in Neural Information Processing Systems, 2018 | 99 | 2018 |
pySOT and POAP: An Event-Driven Asynchronous Framework for Surrogate Optimization D Eriksson, D Bindel, CA Shoemaker arXiv preprint arXiv:1908.00420, 2019 | 88 | 2019 |
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization G Pleiss, M Jankowiak, D Eriksson, A Damle, JR Gardner Advances in Neural Information Processing Systems, 2020 | 48 | 2020 |
Continental hydrology loading observed by VLBI measurements D Eriksson, DS MacMillan Journal of Geodesy 88 (7), 675-690, 2014 | 41 | 2014 |
Bayesian optimization over discrete and mixed spaces via probabilistic reparameterization S Daulton, X Wan, D Eriksson, M Balandat, MA Osborne, E Bakshy Advances in Neural Information Processing Systems 35, 12760-12774, 2022 | 35 | 2022 |
Tropospheric delay ray tracing applied in VLBI analysis D Eriksson, DS MacMillan, JM Gipson Journal of Geophysical Research: Solid Earth 119 (12), 9156-9170, 2014 | 33 | 2014 |
A nonmyopic approach to cost-constrained Bayesian optimization EH Lee, D Eriksson, V Perrone, M Seeger Uncertainty in Artificial Intelligence, 568-577, 2021 | 26 | 2021 |
Unexpected improvements to expected improvement for bayesian optimization S Ament, S Daulton, D Eriksson, M Balandat, E Bakshy Advances in Neural Information Processing Systems 36, 2024 | 21 | 2024 |
Efficient rollout strategies for Bayesian optimization E Lee, D Eriksson, D Bindel, B Cheng, M Mccourt Conference on Uncertainty in Artificial Intelligence, 260-269, 2020 | 20 | 2020 |
Latency-aware neural architecture search with multi-objective bayesian optimization D Eriksson, PIJ Chuang, S Daulton, P Xia, A Shrivastava, A Babu, S Zhao, ... arXiv preprint arXiv:2106.11890, 2021 | 16 | 2021 |
Surrogate optimization toolbox (pySOT) D Eriksson, D Bindel, C Shoemaker github.com/dme65/pySOT, 2015 | 14 | 2015 |
Discovering many diverse solutions with bayesian optimization N Maus, K Wu, D Eriksson, J Gardner arXiv preprint arXiv:2210.10953, 2022 | 13 | 2022 |
Sparse bayesian optimization S Liu, Q Feng, D Eriksson, B Letham, E Bakshy International Conference on Artificial Intelligence and Statistics, 3754-3774, 2023 | 10 | 2023 |
Bayesian optimization over high-dimensional combinatorial spaces via dictionary-based embeddings A Deshwal, S Ament, M Balandat, E Bakshy, JR Doppa, D Eriksson International Conference on Artificial Intelligence and Statistics, 7021-7039, 2023 | 7 | 2023 |