Detonation cell size model based on deep neural network for hydrogen, methane and propane mixtures with air and oxygen K Malik, M Żbikowski, A Teodorczyk Nuclear Engineering and Technology 51 (2), 424-431, 2019 | 33 | 2019 |
Laminar Burning Velocity Model Based on Deep Neural Network for Hydrogen and Propane with Air K Malik, M Żbikowski, A Teodorczyk Energies 13 (13), 3381, 2020 | 17 | 2020 |
Numerical and experimental investigation of H2-air and H2O2 detonation parameters in a 9 m long tube, introduction of a new detonation model K Malik, M Żbikowski, D Bąk, P Lesiak, A Teodorczyk International Journal of Hydrogen Energy 44 (17), 8743-8750, 2019 | 10 | 2019 |
Numerical and experimental investigation of methane-oxygen detonation in a 9 m long tube K Malik, M Żbikowski, A Teodorczyk, P Lesiak Journal of KONES 23 (4), 311--318, 2016 | 6 | 2016 |
Methane-air laminar burning velocity predictions with machine learning algorithms A Jach, M Żbikowski, K Malik, M Żbikowski, K Adamski, I Cieślak, ... The Institute of Heat Engineering, 2017 | 5 | 2017 |
Ignition delay time model based on a deep neural network A Jach, M Zbikowski, K Malik, A Teodorczyk 27th ICDERS, 2019 | 3 | 2019 |
Numerical study on detonation of hydrogen, methane and propane mixtures with air and oxygen KP Malik Instytut Techniki Cieplnej, 2017 | | 2017 |
Numerical and experimental study on detonation of hydrogen-air mixtures KP Malik Instytut Techniki Cieplnej, 2016 | | 2016 |
in Polish Badania numeryczne i eksperymentalne detonacji mieszaniny wodoru i powietrza KPM WMEiL, KP Malik | | |