Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite A Geiger, P Lenz, R Urtasun Computer Vision and Pattern Recognition (CVPR),(Providence, USA), 2012 | 14590 | 2012 |
Vision meets robotics: The KITTI dataset A Geiger, P Lenz, C Stiller, R Urtasun The International Journal of Robotics Research 32 (11), 1231-1237, 2013 | 9435 | 2013 |
Occupancy networks: Learning 3d reconstruction in function space L Mescheder, M Oechsle, M Niemeyer, S Nowozin, A Geiger Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019 | 2689 | 2019 |
Object Scene Flow for Autonomous Vehicles M Menze, A Geiger Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2015 | 2422 | 2015 |
Octnet: Learning deep 3d representations at high resolutions G Riegler, A Osman Ulusoy, A Geiger Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017 | 1749 | 2017 |
Which Training Methods for GANs do actually Converge? L Mescheder, A Geiger, S Nowozin International Conference on Machine Learning, 3478-3487, 2018 | 1563 | 2018 |
Stereoscan: Dense 3d reconstruction in real-time A Geiger, J Ziegler, C Stiller Intelligent Vehicles Symposium (IV), 2011 IEEE, 963-968, 2011 | 1403 | 2011 |
Efficient large-scale stereo matching A Geiger, M Roser, R Urtasun Computer Vision–ACCV 2010, 25-38, 2011 | 1100 | 2011 |
Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art J Janai, F Güney, A Behl, A Geiger Foundations and Trends® in Computer Graphics and Vision 12 (1–3), 1-308, 2020 | 997 | 2020 |
Sparsity invariant cnns J Uhrig, N Schneider, L Schneider, U Franke, T Brox, A Geiger 2017 International Conference on 3D Vision (3DV), 11-20, 2017 | 929 | 2017 |
Convolutional occupancy networks S Peng, M Niemeyer, L Mescheder, M Pollefeys, A Geiger European Conference on Computer Vision, 523-540, 2020 | 915 | 2020 |
Tensorf: Tensorial radiance fields A Chen, Z Xu, A Geiger, J Yu, H Su European Conference on Computer Vision, 333-350, 2022 | 913 | 2022 |
Differentiable volumetric rendering: Learning implicit 3d representations without 3d supervision M Niemeyer, L Mescheder, M Oechsle, A Geiger Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020 | 905 | 2020 |
Giraffe: Representing scenes as compositional generative neural feature fields M Niemeyer, A Geiger Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021 | 887 | 2021 |
A new performance measure and evaluation benchmark for road detection algorithms J Fritsch, T Kuehnl, A Geiger 16th International IEEE Conference on Intelligent Transportation Systems …, 2013 | 807 | 2013 |
GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis K Schwarz, Y Liao, M Niemeyer, A Geiger Advances in Neural Information Processing Systems 33, 2020 | 777 | 2020 |
A multi-view stereo benchmark with high-resolution images and multi-camera videos T Schops, JL Schonberger, S Galliani, T Sattler, K Schindler, M Pollefeys, ... Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017 | 759 | 2017 |
Automatic camera and range sensor calibration using a single shot A Geiger, F Moosmann, Ö Car, B Schuster 2012 IEEE International Conference on Robotics and Automation, 3936-3943, 2012 | 724 | 2012 |
Adversarial variational bayes: Unifying variational autoencoders and generative adversarial networks L Mescheder, S Nowozin, A Geiger Proceedings of the 34th International Conference on Machine Learning-Volume …, 2017 | 631 | 2017 |
Kilonerf: Speeding up neural radiance fields with thousands of tiny mlps C Reiser, S Peng, Y Liao, A Geiger Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021 | 624 | 2021 |