关注
jiri prosek
jiri prosek
在 fzp.czu.cz 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
UAV for mapping shrubland vegetation: Does fusion of spectral and vertical information derived from a single sensor increase the classification accuracy?
J Prošek, P Šímová
International Journal of Applied Earth Observation and Geoinformation 75 …, 2019
872019
The potential of Unmanned Aerial Systems: A tool towards precision classification of hard-to-distinguish vegetation types?
J Komárek, T Klouček, J Prošek
International journal of applied earth observation and geoinformation 71, 9-19, 2018
832018
Vegetation structure derived from airborne laser scanning to assess species distribution and habitat suitability: The way forward
V Moudrý, AF Cord, L Gábor, GV Laurin, V Barták, K Gdulová, M Malavasi, ...
Diversity and Distributions 29 (1), 39-50, 2023
522023
Effects of urbanization on taxonomic, functional and phylogenetic avian diversity in Europe
F Morelli, Y Benedetti, JD Ibáñez-Álamo, P Tryjanowski, J Jokimäki, ...
Science of the Total Environment 795, 148874, 2021
472021
Comparison of a commercial and home-assembled fixed-wing UAV for terrain mapping of a post-mining site under leaf-off conditions
V Moudrý, R Urban, M Štroner, J Komárek, J Brouček, J Prošek
International journal of remote sensing 40 (2), 555-572, 2019
432019
Applicability of Data Acquisition Characteristics to the Identification of Local Artefacts in Global Digital Elevation Models: Comparison of the Copernicus and TanDEM-X DEMs
J Marešová, K Gdulová, P Pracná, D Moravec, L Gábor, J Prošek, ...
Remote Sensing 13 (19), 3931, 2021
352021
Temperature buffering in temperate forests: Comparing microclimate models based on ground measurements with active and passive remote sensing
V Kašpar, L Hederová, M Macek, J Müllerová, J Prošek, P Surový, J Wild, ...
Remote Sensing of Environment 263, 112522, 2021
342021
Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non‐forest ecosystems
AM Cunliffe, K Anderson, F Boschetti, RE Brazier, HA Graham, ...
Remote Sensing in Ecology and Conservation 8 (1), 57-71, 2022
292022
Integration of hyperspectral and LiDAR data for mapping small water bodies
J Prošek, K Gdulová, V Barták, J Vojar, M Solský, D Rocchini, V Moudrý
International Journal of Applied Earth Observation and Geoinformation 92, 102181, 2020
272020
Effects of environmental conditions on ICESat-2 terrain and canopy heights retrievals in Central European mountains
V Moudrý, K Gdulová, L Gábor, E Šárovcová, V Barták, F Leroy, ...
Remote Sensing of Environment 279, 113112, 2022
262022
Scale mismatches between predictor and response variables in species distribution modelling: A review of practices for appropriate grain selection
V Moudrý, P Keil, L Gábor, V Lecours, A Zarzo-Arias, V Barták, ...
Progress in Physical Geography: Earth and Environment 47 (3), 467-482, 2023
212023
Digital elevation models as predictors of yield: comparison of an UAV and other elevation data sources
D Moravec, J Komárek, J Kumhálová, M Kroulík, J Prošek, P Klápště
Agron Res 15 (1), 249-55, 2017
162017
Effects of light and noise pollution on avian communities of European cities are correlated with the species’ diet
F Morelli, P Tryjanowski, JD Ibáñez-Álamo, M Díaz, J Suhonen, ...
Scientific Reports 13 (1), 4361, 2023
82023
Drone-derived canopy height predicts biomass across non-forest ecosystems globally
AM Cunliffe, K Anderson, F Boschetti, RE Brazier, HA Graham, ...
bioRxiv, 2020.07. 16.206011, 2020
42020
Optimising Species Distribution Models: Sample size, positional error, and sampling bias matter
V Moudrý, M Bazzichetto, R Remelgado, R Devillers, J Lenoir, RG Mateo, ...
EcoEvoRxiv, 2023
32023
Optimising occurrence data in species distribution models: sample size, positional uncertainty, and sampling bias matter
V Moudrý, M Bazzichetto, R Remelgado, R Devillers, J Lenoir, RG Mateo, ...
Ecography, e07294, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–16