Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information I Sushko, S Novotarskyi, R Körner, AK Pandey, M Rupp, W Teetz, ... Journal of computer-aided molecular design 25, 533-554, 2011 | 624 | 2011 |
Comparison of deep learning with multiple machine learning methods and metrics using diverse drug discovery data sets A Korotcov, V Tkachenko, DP Russo, S Ekins Molecular pharmaceutics 14 (12), 4462-4475, 2017 | 348 | 2017 |
Identification of “known unknowns” utilizing accurate mass data and ChemSpider JL Little, AJ Williams, A Pshenichnov, V Tkachenko Journal of the American Society for Mass Spectrometry 23 (1), 179-185, 2011 | 210 | 2011 |
The ChEMBL database as linked open data EL Willighagen, A Waagmeester, O Spjuth, P Ansell, AJ Williams, ... Journal of cheminformatics 5, 1-12, 2013 | 147 | 2013 |
Open-source QSAR models for pKa prediction using multiple machine learning approaches K Mansouri, NF Cariello, A Korotcov, V Tkachenko, CM Grulke, ... Journal of Cheminformatics 11, 1-20, 2019 | 136 | 2019 |
Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation AJ Williams, S Ekins, V Tkachenko Drug discovery today 17 (13-14), 685-701, 2012 | 131 | 2012 |
CATMoS: collaborative acute toxicity modeling suite K Mansouri, AL Karmaus, J Fitzpatrick, G Patlewicz, P Pradeep, D Alberga, ... Environmental health perspectives 129 (4), 047013, 2021 | 98 | 2021 |
Comparing and Validating Machine Learning Models for Mycobacterium tuberculosis Drug Discovery T Lane, DP Russo, KM Zorn, AM Clark, A Korotcov, V Tkachenko, ... Molecular pharmaceutics 15 (10), 4346-4360, 2018 | 97 | 2018 |
Graph convolutional neural networks as “general-purpose” property predictors: the universality and limits of applicability V Korolev, A Mitrofanov, A Korotcov, V Tkachenko Journal of chemical information and modeling 60 (1), 22-28, 2019 | 73 | 2019 |
High-performance integrated virtual environment (HIVE): a robust infrastructure for next-generation sequence data analysis V Simonyan, K Chumakov, H Dingerdissen, W Faison, S Goldweber, ... Database 2016, baw022, 2016 | 71 | 2016 |
Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining KM Hettne, AJ Williams, EM van Mulligen, J Kleinjans, V Tkachenko, ... Journal of cheminformatics 2, 1-7, 2010 | 63 | 2010 |
The Royal Society of Chemistry and the delivery of chemistry data repositories for the community A Williams, V Tkachenko Journal of computer-aided molecular design 28 (10), 1023-1030, 2014 | 53 | 2014 |
Free online resources enabling crowd-sourced drug discovery J Antony, V Tkachenko, C Lipinski, S Ekins Drug Discovery 10, 33, 2009 | 45 | 2009 |
Transferable and extensible machine learning-derived atomic charges for modeling hybrid nanoporous materials VV Korolev, A Mitrofanov, EI Marchenko, NN Eremin, V Tkachenko, ... Chemistry of Materials 32 (18), 7822-7831, 2020 | 42 | 2020 |
Programmatic conversion of crystal structures into 3D printable files using Jmol VF Scalfani, AJ Williams, V Tkachenko, K Karapetyan, A Pshenichnov, ... Journal of Cheminformatics 8, 1-8, 2016 | 36 | 2016 |
Scientific lenses to support multiple views over linked chemistry data C Batchelor, CYA Brenninkmeijer, C Chichester, M Davies, D Digles, ... The Semantic Web–ISWC 2014: 13th International Semantic Web Conference, Riva …, 2014 | 34 | 2014 |
The Chemical Validation and Standardization Platform (CVSP): large-scale automated validation of chemical structure datasets K Karapetyan, C Batchelor, D Sharpe, V Tkachenko, AJ Williams Journal of cheminformatics 7, 1-13, 2015 | 29 | 2015 |
ChemSpider-building a foundation for the semantic web by hosting a crowd sourced databasing platform for chemistry AJ Williams, V Tkachenko, S Golotvin, R Kidd, G McCann Journal of cheminformatics 2, 1-1, 2010 | 25 | 2010 |
Machine-learning-assisted search for functional materials over extended chemical space V Korolev, A Mitrofanov, A Eliseev, V Tkachenko Materials Horizons 7 (10), 2710-2718, 2020 | 19 | 2020 |
Machine Learning Models for Mycobacterium tuberculosis In Vitro Activity: Prediction and Target Visualization TR Lane, F Urbina, L Rank, J Gerlach, O Riabova, A Lepioshkin, ... Molecular pharmaceutics 19 (2), 674-689, 2021 | 16 | 2021 |