关注
Dr. Rajesh Pratap Singh
Dr. Rajesh Pratap Singh
Professor of Mathematics, Central University of South Bihar
在 cub.ac.in 的电子邮件经过验证
标题
引用次数
引用次数
年份
Public key cryptography using permutation p-polynomials over finite fields
RP Singh, BK Sarma, A Saikia
Cryptology ePrint Archive, 2009
202009
Poly-dragon: an efficient multivariate public key cryptosystem
RP Singh, A Saikia, BK Sarma
Journal of Mathematical Cryptology 4 (4), 349-364, 2011
162011
LITTLE DRAGON TWO: AN EFFICIENT MULTIVARIATE PUBLIC KEY CRYPTOSYSTEM
RP Singh, A Saikia, BK Sarma
International Journal of Network Security 2 (2), 2010
112010
A PUBLIC KEY CRYPTOSYSTEM USING A GROUP OF PERMUTATION POLYNOMIALS
RP SINGH, BK SARMA, A SAIKIA
Tatra Mountains Mathematical Publications 77, 139 - 162, 2020
82020
Permutation Polynomials modulo
RP Singh, S Maity
Cryptology ePrint Archive, 2009
72009
Two congurence identities on ordered partition
RP Singh, MK Singh
INTEGERS: Electronic Journal of combinatorial Number theory 18 (#A73), 2018
52018
Permutation polynomials and their applications in cryptography
RP Singh
Guwahati, 2010
42010
On a conjecture concerning Kloosterman polynomials
MK Singh, RP Singh
The journal of analysis 27, 515-523, 2019
22019
Some results on complete permutation polynomials and mutually orthogonal Latin squares
CK Vishwakarma, RP Singh
Finite fields and Their Applications 93, 2023
12023
Some Families of Planar functions over quadratic and cubic extensions of finite fields
D Kumar, RP Singh, RK Jha
Palestine Journal of Mathematics 13 (Special Issue II), 50-57, 2024
2024
A CONGRUENCE IDENTITY ON ORDERED PARTITIONS USING PERMUTATION POLYNOMIALS
CK Vishwakarma, RP Singh
INTEGERS:Electronic Journal of Combinatorial Number Theory 24 (#A12), 2024
2024
Some quadratic permutation polynomials over finite fields
Rajesh P. Singh and Chandan Kumar, Vishwakarma
Journal of Algebra and Its Applications, 2023
2023
A NOTE ON PERFECT NONLINEAR FUNCTIONS OVER FINITE FIELDS OF ODD CHARACTERISTIC
D Kumar, RP Singh
European Chemical Bulletin 12 (Special Issue 10), 2023
2023
A METHOD FOR GENERATING PERMUTATION POLYNOMIALS MODULO p^n
RP Singh
INTEGERS: Electronic Journal of combinatorial Number theory 21 (#A73), 139 - 162, 2021
2021
On Compositional Inverse of Two Classes of Permutation Polynomials of the Form ++ + over
MK Singh, RP Singh
Journal of Mathematical Sciences 3, 126-129, 2016
2016
系统目前无法执行此操作,请稍后再试。
文章 1–15