关注
Pierre-Alexandre Mattei
Pierre-Alexandre Mattei
Research scientist, Inria
在 inria.fr 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data Sets
PA Mattei, J Frellsen
International Conference on Machine Learning, 4413-4423, 2019
2892019
Leveraging the exact likelihood of deep latent variable models
PA Mattei, J Frellsen
Advances in Neural Information Processing Signals 31, 3859-3870, 2018
662018
not-MIWAE: Deep generative modelling with missing not at random data
NB Ipsen, PA Mattei, J Frellsen
International Conference on Learning Representations, 2021
612021
Asteroid taxonomy from cluster analysis of spectrometry and albedo
M Mahlke, B Carry, PA Mattei
Astronomy & Astrophysics 665, A26, 2022
442022
How to deal with missing data in supervised deep learning?
N Ipsen, PA Mattei, J Frellsen
International Conference on Learning Representations, 2022
402022
Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation
S Wiqvist, PA Mattei, U Picchini, J Frellsen
International Conference on Machine Learning, 6798-6807, 2019
382019
Deep adversarial Gaussian mixture auto-encoder for clustering
W Harchaoui, PA Mattei, C Bouveyron
OpenReview preprint, 2017
352017
Bayesian variable selection for globally sparse probabilistic PCA
C Bouveyron, P Latouche, PA Mattei
Electronic Journal of Statistics 12 (2), 3036-3070, 2018
312018
Exact dimensionality selection for Bayesian PCA
C Bouveyron, P Latouche, PA Mattei
Scandinavian Journal of Statistics 47 (1), 196-211, 2020
232020
Globally sparse probabilistic PCA
PA Mattei, C Bouveyron, P Latouche
International Conference on Artificial Intelligence and Statistics, 976-984, 2016
182016
Combining a relaxed EM algorithm with Occam’s razor for Bayesian variable selection in high-dimensional regression
P Latouche, PA Mattei, C Bouveyron, J Chiquet
Journal of Multivariate Analysis 146, 177-190, 2016
162016
Model-agnostic out-of-distribution detection using combined statistical tests
F Bergamin, PA Mattei, JD Havtorn, H Senetaire, H Schmutz, L Maaløe, ...
International Conference on Artificial Intelligence and Statistics, 10753-10776, 2022
152022
A parsimonious tour of bayesian model uncertainty
PA Mattei
arXiv preprint arXiv:1902.05539, 2019
152019
Don’t fear the unlabelled: safe semi-supervised learning via debiasing
H Schmutz, O Humbert, PA Mattei
International Conference on Learning Representations, 2023
14*2023
Refit your encoder when new data comes by
PA Mattei, J Frellsen
3rd NeurIPS workshop on Bayesian Deep Learning, 2018
112018
Multiplying a Gaussian matrix by a Gaussian vector
PA Mattei
Statistics & Probability Letters 128, 67-70, 2017
92017
Tensor decomposition for learning Gaussian mixtures from moments
R Khouja, PA Mattei, B Mourrain
Journal of Symbolic Computation 113, 193-210, 2022
82022
Class‐specific variable selection in high‐dimensional discriminant analysis through Bayesian Sparsity
F Orlhac, PA Mattei, C Bouveyron, N Ayache
Journal of Chemometrics 33 (2), e3097, 2019
82019
Generalised mutual information for discriminative clustering
L Ohl, PA Mattei, C Bouveyron, W Harchaoui, M Leclercq, A Droit, ...
Advances in Neural Information Processing Systems 35, 3377-3390, 2022
52022
Are labels informative in semi-supervised learning? Estimating and leveraging the missing-data mechanism.
A Sportisse, H Schmutz, O Humbert, C Bouveyron, PA Mattei
International Conference on Machine Learning, 32521-32539, 2023
42023
系统目前无法执行此操作,请稍后再试。
文章 1–20