Inference on heterogeneous treatment effects in high‐dimensional dynamic panels under weak dependence V Semenova, M Goldman, V Chernozhukov, M Taddy Quantitative Economics 14 (2), 471-510, 2023 | 228* | 2023 |
Debiased machine learning of conditional average treatment effects and other causal functions V Semenova, V Chernozhukov Econometrics Journal, 2020 | 215* | 2020 |
Regularized Orthogonal Machine Learning for Nonlinear Semiparametric Models D Nekipelov, V Semenova, V Syrgkanis Econometrics Journal, 2021 | 38* | 2021 |
Generalized lee bounds V Semenova arXiv preprint arXiv:2008.12720, 2020 | 25* | 2020 |
Debiased machine learning of set-identified linear models V Semenova Journal of Econometrics 235 (2), 1725-1746, 2023 | 12* | 2023 |
Machine Learning for Dynamic Discrete Choice V Semenova arXiv preprint arXiv:1908.09173, 0 | 12* | |
Adaptive estimation of intersection bounds: a classification approach V Semenova arXiv preprint arXiv:2303.00982, 2023 | 4 | 2023 |
Essays in econometrics and machine learning V Semenova Massachusetts Institute of Technology, 2018 | 3 | 2018 |
Inference on weighted average value function in high-dimensional state space V Chernozhukov, W Newey, V Semenova arXiv preprint arXiv:1908.09173, 2019 | 2 | 2019 |
Supplement to ‘Inference on heterogeneous treatment effects in high-dimensional dynamic panels under weak dependence’ V Semenova, M Goldman, V Chernozhukov, M Taddy Quantitative Economics Supplemental Material 14, 2023 | 1 | 2023 |
Causal Inference with Machine Learning V Chernozhukov, MD Cinelli, E Duflo, I Fernandez-Val, C Hansen, ... | | 2022 |