A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation Y Gong, Q Wang, Y Wang, J Cai Journal of Computational Physics 328, 354-370, 2017 | 127 | 2017 |
Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs Y Gong, J Cai, Y Wang Journal of Computational Physics 279, 80-102, 2014 | 98 | 2014 |
Multi-symplectic Fourier pseudospectral method for the Kawahara equation Y Gong, J Cai, Y Wang Communications in Computational Physics 16 (1), 35-55, 2014 | 62 | 2014 |
Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schrödinger system J Cai, Y Wang, H Liang Journal of Computational Physics 239, 30-50, 2013 | 58 | 2013 |
Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs J Cai, J Shen Journal of Computational Physics 401, 108975, 2020 | 52 | 2020 |
Local structure-preserving algorithms for the “good” Boussinesq equation J Cai, Y Wang Journal of Computational Physics 239, 72-89, 2013 | 41 | 2013 |
Two energy-conserved splitting methods for three-dimensional time-domain Maxwell's equations and the convergence analysis J Cai, J Hong, Y Wang, Y Gong SIAM Journal on Numerical Analysis 53 (4), 1918-1940, 2015 | 33 | 2015 |
Multisymplectic schemes for strongly coupled Schrödinger system J Cai Applied mathematics and computation 216 (8), 2417-2429, 2010 | 29 | 2010 |
Numerical analysis of AVF methods for three-dimensional time-domain Maxwell’s equations J Cai, Y Wang, Y Gong Journal of Scientific Computing 66 (1), 141-176, 2016 | 28 | 2016 |
An energy-conserving method for stochastic Maxwell equations with multiplicative noise J Hong, L Ji, L Zhang, J Cai Journal of Computational Physics 351, 216-229, 2017 | 27 | 2017 |
New multisymplectic self-adjoint scheme and its composition scheme for the time-domain Maxwell’s equations J Cai, Y Wang, B Wang, B Jiang Journal of mathematical physics 47 (12), 2006 | 26 | 2006 |
Efficient schemes for the damped nonlinear Schrödinger equation in high dimensions J Cai, H Zhang Applied Mathematics Letters 102, 106158, 2020 | 25 | 2020 |
Decoupled local/global energy-preserving schemes for the N-coupled nonlinear Schrödinger equations J Cai, C Bai, H Zhang Journal of Computational Physics 374, 281-299, 2018 | 23 | 2018 |
Multisymplectic Preissman scheme for the time-domain Maxwell’s equations J Cai, Y Wang, Z Qiao Journal of mathematical physics 50 (3), 2009 | 22 | 2009 |
A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schrödinger system JX Cai, YS Wang Chinese Physics B 22 (6), 060207, 2013 | 21 | 2013 |
A multisymplectic explicit scheme for the modified regularized long-wave equation J Cai Journal of computational and applied mathematics 234 (3), 899-905, 2010 | 18 | 2010 |
Multisymplectic numerical method for the regularized long-wave equation J Cai Computer Physics Communications 180 (10), 1821-1831, 2009 | 18 | 2009 |
Efficient mass-and energy-preserving schemes for the coupled nonlinear Schrödinger–Boussinesq system J Cai, B Yang, C Zhang Applied Mathematics Letters 91, 76-82, 2019 | 17 | 2019 |
Explicit Multisymplectic Fourier Pseudospectral Scheme for the Klein—Gordon—Zakharov Equations JX Cai, H Liang Chinese Physics Letters 29 (8), 080201, 2012 | 16 | 2012 |
A new explicit multisymplectic scheme for the regularized long-wave equation J Cai Journal of mathematical physics 50 (1), 2009 | 16 | 2009 |